Loading…

On-target delivery of intense ultrafast laser pulses through hollow-core anti-resonant fibers

We report the flexible on-target delivery of 800 nm wavelength, 5 GW peak power, 40 fs duration laser pulses through an evacuated and tightly coiled 10 m long hollow-core nested anti-resonant fiber by positively chirping the input pulses to compensate for the anomalous dispersion of the fiber. Near-...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2023-09, Vol.31 (19), p.30227
Main Authors: Lekosiotis, Athanasios, Belli, Federico, Brahms, Christian, Sabbah, Mohammed, Sakr, Hesham, Davidson, Ian A., Poletti, Francesco, Travers, John C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the flexible on-target delivery of 800 nm wavelength, 5 GW peak power, 40 fs duration laser pulses through an evacuated and tightly coiled 10 m long hollow-core nested anti-resonant fiber by positively chirping the input pulses to compensate for the anomalous dispersion of the fiber. Near-transform-limited output pulses with high beam quality and a guided peak intensity of 3 PW/cm 2 were achieved by suppressing plasma effects in the residual gas by pre-pumping the fiber with laser pulses after evacuation. This appears to cause a long-term removal of molecules from the fiber core. Identifying the fluence at the fiber core-wall interface as the damage origin, we scaled the coupled energy to 2.1 mJ using a short piece of larger-core fiber to obtain 20 GW at the fiber output. This scheme can pave the way towards the integration of anti-resonant fibers in mJ-level nonlinear optical experiments and laser-source development.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.496506