Loading…

Anisotropic elastic properties of nanocrystalline nickel thin films

The elastic properties of a nickel film approximately 800 nm thick were measured with nanoindentation, microtensile testing, atomic force acoustic microscopy (AFAM), and surface acoustic wave (SAW) spectroscopy. Values for the indentation modulus (220–223 GPa) and Young’s modulus (177–204 GPa) were...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2005-05, Vol.20 (5), p.1186-1193
Main Authors: Hurley, D.C., Geiss, R.H., Kopycinska-Müller, M., Müller, J., Read, D.T., Wright, J.E., Jennett, N.M., Maxwell, A.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The elastic properties of a nickel film approximately 800 nm thick were measured with nanoindentation, microtensile testing, atomic force acoustic microscopy (AFAM), and surface acoustic wave (SAW) spectroscopy. Values for the indentation modulus (220–223 GPa) and Young’s modulus (177–204 GPa) were lower than predicted for randomly oriented polycrystalline nickel. The observed behavior was attributed to grain-boundary effects in the nanocrystalline film. In addition, the different measurement results were not self-consistent when interpreted assuming elastic isotropy. Agreement was improved by adopting a transversely isotropic model corresponding to the film’s 〈111〉 preferred orientation and reducing the elastic moduli by 10–15%. The SAW spectroscopy results indicated that the film density was 1–2% lower than expected for bulk nickel, consistent with models for nanocrystalline materials. Similar reductions in modulus and density were observed for two additional films approximately 200 and 50 nm thick using AFAM and SAW spectroscopy. These results illustrate how complementary methods can provide a more complete picture of film properties.
ISSN:0884-2914
2044-5326
DOI:10.1557/JMR.2005.0146