Loading…

Tunable CO2-to-syngas conversion via strong electronic coupling in S-scheme ZnGa2O4/g-C3N4 photocatalysts

[Display omitted] The conversion of CO2 into syngas, a mixture of CO and H2, via photocatalytic reduction, is a promising approach towards achieving a sustainable carbon economy. However, the evolution of highly adjustable syngas, particularly without the use of sacrifice reagents or additional coca...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2023-12, Vol.652, p.636-645
Main Authors: Pei, Lang, Luo, Zhenggang, Wang, Xusheng, Ma, Zhanfeng, Nie, Yuhang, Zhong, Jiasong, Yang, Ding, Bandaru, Sateesh, Su, Bao-Lian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] The conversion of CO2 into syngas, a mixture of CO and H2, via photocatalytic reduction, is a promising approach towards achieving a sustainable carbon economy. However, the evolution of highly adjustable syngas, particularly without the use of sacrifice reagents or additional cocatalysts, remains a significant challenge. In this study, a step-scheme (S-scheme) 0D ZnGa2O4 nanodots (∼7 nm) rooted g-C3N4 nanosheets (denoted as ZnGa2O4/C3N4) heterojunction photocatalyst was synthesized vis a facial in-situ growth strategy for efficient CO2-to-syngas conversion. Both experimental and theoretical studies have demonstrated that the polymeric nature of g-C3N4 and highly distributed ZnGa2O4 nanodots synergistically contribute to a strong interaction between metal oxide and C3N4 support. Furthermore, the desirable S-scheme heterojunction in ZnGa2O4/C3N4 efficiently promotes charge separation, enabling strong photoredox ability. As a result, the S-scheme ZnGa2O4/C3N4 exhibited remarkable activity and selectivity in photochemical conversion of CO2 into syngas, with a syngas production rate of up to 103.3 μ mol g−1 h−1, even in the absence of sacrificial agents and cocatalyst. Impressively, the CO/H2 ratio of syngas can be tunable within a wide range from 1:4 to 2:1. This work exemplifies the effectiveness of a meticulously designed S-scheme heterojunction photocatalyst for CO2-to-syngas conversion with adjustable composition, thus paving the way for new possibilities in sustainable energy conversion and utilization.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.07.148