Loading…

Functionalized Cycloolefin Ligand as a Solution to Ortho-Constraint in the Catellani-Type Reaction

The Catellani reaction, i.e., the Pd/norbornene (NBE) catalysis, has been evolved into a versatile approach to multisubstituted arenes via the ortho-functionalization/ipso-termination process of a haloarene. Despite significant advances over the past 25 years, this reaction still suffered from an in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2023-03, Vol.145 (8), p.4871-4881
Main Authors: Wang, Feng-Yuan, Li, Yu-Xiu, Jiao, Lei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Catellani reaction, i.e., the Pd/norbornene (NBE) catalysis, has been evolved into a versatile approach to multisubstituted arenes via the ortho-functionalization/ipso-termination process of a haloarene. Despite significant advances over the past 25 years, this reaction still suffered from an intrinsic limitation in the substitution pattern of haloarene, referred to as “ortho-constraint”. When an ortho substituent is absent, the substrate often fails to undergo an effective mono ortho-functionalization process, and either ortho-difunctionalization products or NBE-embedded byproducts predominate. To tackle this challenge, structurally modified NBEs (smNBEs) have been developed, which were proved effective for the mono ortho-aminative, -acylative, and -arylative Catellani reactions of ortho-unsubstituted haloarenes. However, this strategy is incompetent for solving the ortho-constraint in Catellani reactions with ortho-alkylation, and to date there lacks a general solution to this challenging but synthetically useful transformation. Recently, our group developed the Pd/olefin catalysis, in which an unstrained cycloolefin ligand served as a covalent catalytic module to enable the ortho-alkylative Catellani reaction without NBE. In this work, we show that this chemistry could afford a new solution to ortho-constraint in the Catellani reaction. A functionalized cycloolefin ligand bearing an amide group as the internal base was designed, which allowed for mono ortho-alkylative Catellani reaction of iodoarenes suffering from ortho-constraint before. Mechanistic study revealed that this ligand is capable of both accelerating the C–H activation and inhibiting side reactions, which accounts for its superior performance. The present work showcased the uniqueness of the Pd/olefin catalysis as well as the power of rational ligand design in metal catalysis.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.3c00329