Loading…

Design of a binary metal micron grating and its application in near-infrared hot-electron photodetectors

Metal plasmonic nano-gratings possess a high absorption ability and exhibit potential applications in sensing, hot-electron photodetection, metasurfaces, etc. However, the fabrication techniques of high-quality nano-gratings are challenging. In this article, a binary metal micron grating for near-in...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2023-08, Vol.48 (15), p.4033-4036
Main Authors: Hu, Xiao-Long, Li, Fen, Xu, Shi-Hang, Liu, Wen-Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal plasmonic nano-gratings possess a high absorption ability and exhibit potential applications in sensing, hot-electron photodetection, metasurfaces, etc. However, the fabrication techniques of high-quality nano-gratings are challenging. In this article, a binary metal micron grating for near-infrared hot-electron photodetectors (HEPDs) is designed in which the surface plasmons are excited by high-diffraction-order modes. The high-diffraction-order micron grating can be fabricated by conventional lithography and has a significantly higher tolerance in the grating parameters than a nano-grating. The range of absorption greater than 70% is ∼3 times that of a nano-grating. Moreover, an interesting relationship between the resonant wavelength and the grating duty cycle is found. When the high-diffraction-order micron grating is applied in metal-insulator-metal HEPDs, a high zero-biased responsivity of 0.533 mA/W is achieved.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.497058