Loading…

Studies of the accuracy of time integration methods for reaction–diffusion equations

In this study we present numerical experiments of time integration methods applied to systems of reaction–diffusion equations. Our main interest is in evaluating the relative accuracy and asymptotic order of accuracy of the methods on problems which exhibit an approximate balance between the competi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2004-03, Vol.194 (2), p.544-574
Main Authors: Ropp, David L., Shadid, John N., Ober, Curtis C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study we present numerical experiments of time integration methods applied to systems of reaction–diffusion equations. Our main interest is in evaluating the relative accuracy and asymptotic order of accuracy of the methods on problems which exhibit an approximate balance between the competing component time scales. Nearly balanced systems can produce a significant coupling of the physical mechanisms and introduce a slow dynamical time scale of interest. These problems provide a challenging test for this evaluation and tend to reveal subtle differences between the various methods. The methods we consider include first- and second-order semi-implicit, fully implicit, and operator-splitting techniques. The test problems include a prototype propagating nonlinear reaction–diffusion wave, a non-equilibrium radiation–diffusion system, a Brusselator chemical dynamics system and a blow-up example. In this evaluation we demonstrate a “split personality” for the operator-splitting methods that we consider. While operator-splitting methods often obtain very good accuracy, they can also manifest a serious degradation in accuracy due to stability problems.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2003.08.033