Loading…

Utilization of olive mill wastewater for selective production of lipids and carotenoids by Rhodotorula glutinis

Olive mill wastewater (OMW) is a zero-cost substrate for numerous value-added compounds. Although several studies on the production of lipids and carotenoids by Rhodotorula glutinis in OMW exist, none of them has specifically focused on the conditions for a target lipid or carotenoid. This study pre...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2023-08, Vol.107 (15), p.4973-4985
Main Authors: Keskin, Abdulkadir, Ünlü, Ayşe Ezgi, Takaç, Serpil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Olive mill wastewater (OMW) is a zero-cost substrate for numerous value-added compounds. Although several studies on the production of lipids and carotenoids by Rhodotorula glutinis in OMW exist, none of them has specifically focused on the conditions for a target lipid or carotenoid. This study presents cultivation conditions that selectively stimulate the cell biomass, individual carotenoids and lipids. It was found that supplemental carbon and nitrogen sources as well as illumination affected cell biomass the most. High temperature, low initial pH, illumination, lack of urea and presence of glycerol stimulated the lipid synthesis. The highest total lipid content obtained in undiluted OMW supplemented with urea was 11.08 ± 0.17% (w/w) whilst it was 41.40 ± 0.21% (w/w) when supplemented with glycerol. Moreover, the main fatty acid produced by R. glutinis in all media was oleic acid, whose fraction reached 63.94 ± 0.58%. Total carotenoid yield was significantly increased with low initial pH, high temperature, illumination, certain amounts of urea, glycerol and cultivation time. Up to 192.09 ± 0.16 μg/g cell carotenoid yield was achieved. Torularhodin could be selectively produced at high pH, low temperature and with urea and glycerol supplementation. To selectively induce torulene synthesis, cultivation conditions should have low pH, high temperature and illumination. In addition, low pH, high temperature and urea supplementation served high production of β-carotene. Up to 85.40 ± 0.76, 80.67 ± 1.40 and 39.45 ± 0.69% of torulene, torularhodin and β-carotene, respectively, were obtained under selected conditions. Key points • Cultivation conditions selectively induced target carotenoids and lipids • 41.40 ± 0.21% (w/w) lipid content and 192.09 ± 0.16 μg/g cell carotenoid yield were achieved • Markedly high selectivity values for torularhodin and torulene were achieved
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-023-12625-x