Loading…

Integrating surface structure via triphenyl phosphate treatment to stabilize Li-rich Mn-based cathode materials

[Display omitted] Li-rich Mn-based layered oxides (LLOs) have emerged as one of the most promising cathode materials for the next-generation lithium-ion batteries (LIBs) because of their high energy density, high specific capacity, and environmental friendliness. These materials, however, have drawb...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2023-06, Vol.640, p.373-382
Main Authors: Zhang, Shuai, Li, Shihao, Zhang, Haiyan, Guo, Juanlang, Gao, Xianggang, Shi, Hongbing, Liu, Fangyan, Huang, Zeyu, Li, Simin, Zhang, Zhian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Li-rich Mn-based layered oxides (LLOs) have emerged as one of the most promising cathode materials for the next-generation lithium-ion batteries (LIBs) because of their high energy density, high specific capacity, and environmental friendliness. These materials, however, have drawbacks such as capacity degradation, low initial coulombic efficiency (ICE), voltage decay, and poor rate performance due to irreversible oxygen release and structural deterioration during cycling. Herein, we present a facile method of triphenyl phosphate (TPP) surface treatment to create an integrated surface structure on LLOs that includes oxygen vacancies, Li3PO4, and carbon. When used for LIBs, the treated LLOs show an increased initial coulombic efficiency (ICE) of 83.6% and capacity retention of 84.2% at 1C after 200 cycles. It is suggested that the enhanced performance of the treated LLOs can be attributed to the synergetic functions of each component in the integrated surface, such as the oxygen vacancy and Li3PO4 being able to inhibit the evolution of oxygen and accelerate the transport of lithium ions, while the carbon layer can restrain undesirable interfacial side reactions and reduce the dissolution of transition metals. Furthermore, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) prove an enhanced kinetic property of the treated LLOs cathode, and ex-situ X-ray diffractometer shows a suppressed structural transformation of TPP-treated LLOs during the battery reaction. This study provides an effective strategy for constructing an integrated surface structure on LLOs to achieve high-energy cathode materials in LIBs.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.02.054