Loading…

Architectural design for multistage 2-D MEMS optical switches

Next-generation wavelength routing optical networks requiring optical cross connects (OXC) in the network have the ability to direct optical signals from any input interface to suitable output interfaces by configuring their internal embedded optical switch matrices. Microelectromechanical systems (...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2002-02, Vol.20 (2), p.178-187
Main Authors: Gangxiang Shen, Tee Hiang Cheng, Bose, S.K., Chao Lu, Teck Yoong Chai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Next-generation wavelength routing optical networks requiring optical cross connects (OXC) in the network have the ability to direct optical signals from any input interface to suitable output interfaces by configuring their internal embedded optical switch matrices. Microelectromechanical systems (MEMS) switches are regarded as the most promising technology to achieve such functionality. We consider the construction of a multistage MEMS switch network with single two-dimensional (2-D) MEMS switch blocks. A power loss model is developed that calls on a single MEMS block that is then used to develop the model for a three-stage Clos network. An effective model for maximum loss difference between calls is also developed. Based on these, the paper also proposes three connection patterns [Max + Min greedy (MMG), compressed extended generalized shuffle 1 (C-EGS-1), and compressed extended generalized shuffle 2 (C-EGS-2)] to connect outlet ports and inlet ports between two neighboring stages in a three-stage Clos network. These connection patterns are proved to be optimal and efficient enough to reach the minimums of both the maximum power loss of calls and the maximum loss difference between calls.
ISSN:0733-8724
1558-2213
DOI:10.1109/50.983230