Loading…

Autologous blood transfusion impedes glycolysis in macrophages to inhibit red blood cell injury in type 2 diabetes through PI3K/Akt/PKM2 signaling axis

Aims To explore the effect and mechanism of autologous blood transfusion impeding glycolysis in macrophages and inhibiting red blood cells (RBCs) injury in type 2 diabetes through PI3K/Akt/PKM2 signaling axis. Methods Cell transfection were performed and diabetic mice model was constructed. The grou...

Full description

Saved in:
Bibliographic Details
Published in:Acta diabetologica 2023-04, Vol.60 (4), p.481-492
Main Authors: Cheng, Yong, Wang, Huan, Yao, Na, Ren, Qin, Bai, Yu, You, Lai-Wei, Chen, Xiao-Fei, Guo, Jian-Rong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims To explore the effect and mechanism of autologous blood transfusion impeding glycolysis in macrophages and inhibiting red blood cells (RBCs) injury in type 2 diabetes through PI3K/Akt/PKM2 signaling axis. Methods Cell transfection were performed and diabetic mice model was constructed. The group were divided into control (NC) and type 2 diabetes model (T2D). T2D model mice were injected with preserved autologous blood, si-PI3K, si-PKM2, si-NC Tran+T2D, (Tran+T2D+si-PI3K, Tran+T2D si-PKM2, Tran+T2D+si-NC) through tail vein. The anti-oxidative effects of transfusion of autologous blood in CD14+ monocytes were detected. The expression of PI3K/Akt/PKM2 protein in CD14+ monocytes were examined by western blot. Effect of autologous blood transfusion ameliorating RBCs injury by regulating PI3K and PKM2 in T2D mice were detected. Results Effects on oxidative stress in T2D mice were all overturned after autologous blood transfusion in T2D mice. The results manifested that the levels of PI3K, pAkt and PKM2 were downregulated, while the expression of HIF-1α was upregulated in CD14+ monocytes from T2D mice, whereas these influences were all effectively reversed by autologous blood transfusion in T2D mice. The survival rate of RBCs in the serum of T2D mice was declined in the serum of T2D mice, while the effect was reversed by the autologous blood transfusion. Conclusion Autologous blood transfusion can reduce glycolysis in macrophages and inhibit the release of inflammatory factors through the PI3K/PKM2 signal axis, thereby inhibiting red blood cell damage and improving the oxygen-carrying capacity and survival activity of RBCs in diabetic patients.
ISSN:1432-5233
0940-5429
1432-5233
DOI:10.1007/s00592-022-02026-3