Loading…

Two-Dimensional Intercalating Multiferroics with Strong Magnetoelectric Coupling

Intrinsic two-dimensional (2D) multiferroics that couple ferromagnetism and ferroelectricity are rare. Here, we present an approach to achieve 2D multiferroics using powerful intercalation technology. In this approach, metal atoms such as Cu or Ag atoms are intercalated in bilayer CrI3 to form Cu­(C...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2022-12, Vol.13 (49), p.11405-11412
Main Authors: Lyu, Hou-Yi, Zhang, Zhen, You, Jing-Yang, Yan, Qing-Bo, Su, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intrinsic two-dimensional (2D) multiferroics that couple ferromagnetism and ferroelectricity are rare. Here, we present an approach to achieve 2D multiferroics using powerful intercalation technology. In this approach, metal atoms such as Cu or Ag atoms are intercalated in bilayer CrI3 to form Cu­(CrI3)4 or Ag­(CrI3)4. The intercalant leads to the inversion symmetry breaking and produces a large out-of-plane electric polarization with a low transition barrier and a small reversal electric field, exhibiting excellent 2D ferroelectric properties. In addition, due to charge transfer between the intercalated atoms and bilayer CrI3, the interlayer coupling transits from antiferromagnetic to ferromagnetic, and the intralayer ferromagnetic coupling is also enhanced. Furthermore, the built-in electric polarization causes a distinct surface magnetization difference, generating a strong magnetoelectric coupling with a coefficient larger than that of Fe, Co, and Ni thin films. Our work paves a practical path for 2D multiferroics, which may have crucial applications in spintronics.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c03169