Loading…

METTL3 promotes m6A hypermethylation of RBM14 via YTHDF1 leading to the progression of hepatocellular carcinoma

Liver is a well-known immunological organ with unique microenvironment. In normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as Kupffer cells (KCs). The presence of liver immunosuppressive microenvironment underlines the importance to dissect this inter...

Full description

Saved in:
Bibliographic Details
Published in:Human cell : official journal of Human Cell Research Society 2022-11, Vol.35 (6), p.1838-1855
Main Authors: Hu, Jingyao, Yang, Liang, Peng, Xueqiang, Mao, Minghuan, Liu, Xiaodan, Song, Jianbo, Li, Hangyu, Chen, Fu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Liver is a well-known immunological organ with unique microenvironment. In normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as Kupffer cells (KCs). The presence of liver immunosuppressive microenvironment underlines the importance to dissect this interaction to understand how this cross-talk promotes tumor growth in hepatocellular carcinoma (HCC). Therefore, the aim of the study here was to probe the role of methyltransferase-like 3 (METTL3) in the HCC progression and its effect on the polarization of KCs. KCs showed M2 polarization, and METTL3 was overexpressed in our collected HCC tissues relative to adjacent tissues. METTL3 depletion inhibited the M2 polarization of KCs, thereby reverting the malignant phenotype of HCC cells in vitro and growth and metastasis in vivo. Mechanistically, YTH domain-containing family protein 1 (YTHDF1) bound to RNA-binding protein 14 (RBM14), whereas METTL3 knockdown in KCs cells suppressed RBM14 expression by decreasing N-methyladenosine (m6A) methylation. Overexpression of RBM14 mitigated the anti-tumor effects of sh-METTL3 in vitro and in vivo. It is suggested that the mechanism of sh-METTL3 suppressing the polarization of KCs and the progression of HCC is to regulate the RBM14 expression via YTHDF1-dependent m6A modification.
ISSN:1749-0774
0914-7470
1749-0774
DOI:10.1007/s13577-022-00769-3