Chemotherapy suppresses SHH gene expression via a specific enhancer

Sonic hedgehog (SHH) signaling is a key regulator of embryonic development and tissue homeostasis that is involved in gastrointestinal (GI) cancer progression. Regulation of SHH gene expression is a paradigm of long-range enhancer function. Using the classical chemotherapy drug 5-fluorouracil (5FU)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of genetics and genomics 2023-01, Vol.50 (1), p.27-37
Main Authors: Zhang, Yafei, Lin, Jianqiong, Yang, Kaibin, Yue, Zhicao
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sonic hedgehog (SHH) signaling is a key regulator of embryonic development and tissue homeostasis that is involved in gastrointestinal (GI) cancer progression. Regulation of SHH gene expression is a paradigm of long-range enhancer function. Using the classical chemotherapy drug 5-fluorouracil (5FU) as an example, here we show that SHH gene expression is suppressed by chemotherapy. SHH is downstream of immediate early genes (IEGs), including Early growth response 1 (Egr1). A specific 139 kb upstream enhancer is responsible for its down-regulation. Knocking down EGR1 expression or blocking its binding to this enhancer renders SHH unresponsive to chemotherapy. We further demonstrate that down-regulation of SHH expression does not depend on 5FU's impact on nucleotide metabolism or DNA damage; rather, a sustained oxidative stress response mediates this rapid suppression. This enhancer is present in a wide range of tumors and normal tissues, thus providing a target for cancer chemotherapy and its adverse effects on normal tissues. We propose that SHH is a stress-responsive gene downstream of IEGs, and that traditional chemotherapy targets a specific enhancer to suppress its expression.
ISSN:1673-8527