Loading…

Artemisia extracts differ from artemisinin effects on human hepatic CYP450s 2B6 and 3A4 in vitro

The Chinese medicinal herb, Artemisia annua L., has been used for >2,000 yr as traditional tea infusions to treat a variety of infectious diseases including malaria, and its use is spreading globally (along with A. afra Jacq. ex Willd.) mainly through grassroots efforts. Artemisinin is more bioav...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ethnopharmacology 2022-11, Vol.298, p.115587-115587, Article 115587
Main Authors: Kane, Ndeye F., Kiani, Bushra H., Desrosiers, Matthew R., Towler, Melissa J., Weathers, Pamela J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Chinese medicinal herb, Artemisia annua L., has been used for >2,000 yr as traditional tea infusions to treat a variety of infectious diseases including malaria, and its use is spreading globally (along with A. afra Jacq. ex Willd.) mainly through grassroots efforts. Artemisinin is more bioavailable delivered from the plant, Artemisia annua L. than the pure drug, but little is known about how delivery via a hot water infusion (tea) alters induction of hepatic CYP2B6 and CYP3A4 that metabolize artemisinin. HepaRG cells were treated with 10 μM artemisinin or rifampicin (positive control), and teas (10 g/L) of A. annua SAM, and A. afra SEN and MAL with 1.6, 0.05 and 0 mg/g DW artemisinin in the leaves, respectively; qPCR and Western blots were used to measure CYP2B6 and CYP3A4 responses. Enzymatic activity of these P450s was measured using human liver microsomes and P450-Glo assays. All teas inhibited activity of CYP2B6 and CYP3A4. Artemisinin and the high artemisinin-containing tea infusion (SAM) induced CYP2B6 and CYP3A4 transcription, but artemisinin-deficient teas, MAL and SEN, did not. Artemisinin increased CYP2B6 and CYP3A4 protein levels, but none of the three teas did, indicating a post-transcription inhibition by all three teas. This study showed that Artemisia teas inhibit activity and artemisinin autoinduction of CYP2B6 and CYP3A4 post transcription, a response likely the effect of other phytochemicals in these teas. Results are important for understanding Artemisia tea posology. [Display omitted]
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2022.115587