Loading…

Analysis of subsurface contaminant migration and remediation using high performance computing

Highly resolved simulations of groundwater flow, chemical migration and contaminant recovery processes are used to test the applicability of stochastic models of flow and transport in a typical field setting. A simulation domain encompassing a portion of the upper saturated aquifer materials beneath...

Full description

Saved in:
Bibliographic Details
Published in:Advances in water resources 1998-11, Vol.22 (3), p.203-221
Main Authors: Tompson, Andrew F.B., Falgout, Robert D., Smith, Steven G., Bosl, William J., Ashby, Steven F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Highly resolved simulations of groundwater flow, chemical migration and contaminant recovery processes are used to test the applicability of stochastic models of flow and transport in a typical field setting. A simulation domain encompassing a portion of the upper saturated aquifer materials beneath the Lawrence Livermore National Laboratory was developed to hierarchically represent known hydrostratigraphic units and more detailed stochastic representations of geologic heterogeneity within them. Within each unit, Gaussian random field models were used to represent hydraulic conductivity variation, as parameterized from well test data and geologic interpretation of spatial variability. Groundwater flow, transport and remedial extraction of two hypothetical contaminants were made in six different statistical realizations of the system. The effective flow and transport behavior observed in the simulations compared reasonably with the predictions of stochastic theories based upon the Gaussian models, even though more exacting comparisons were prevented by inherent nonidealities of the geologic model and flow system. More importantly, however, biases and limitations in the hydraulic data appear to have reduced the applicability of the Gaussian representations and clouded the utility of the simulations and effective behavior based upon them. This suggests a need for better and unbiased methods for delineating the spatial distribution and structure of geologic materials and hydraulic properties in field systems. High performance computing can be of critical importance in these endeavors, especially with respect to resolving transport processes within highly variable media.©1998 Elsevier Science Limited. All rights reserved
ISSN:0309-1708
1872-9657
DOI:10.1016/S0309-1708(98)00013-X