Loading…

Combined Bending and Torsional Fatigue of Woven Roving GRP

A study of biaxial fatigue of woven roving glass reinforced polyester (GRP) subjected to in-phase and out-of-phase cyclic bending and torsional moments is presented. To evaluate failure theories for this material, tests were conducted on two fiber orientations [0, 90] and [45, −45] tubes. The result...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering materials and technology 1997-04, Vol.119 (2), p.180-185
Main Authors: Wafa, M. N. Aboul, Hamdy, A. H, El-Midany, A. A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A study of biaxial fatigue of woven roving glass reinforced polyester (GRP) subjected to in-phase and out-of-phase cyclic bending and torsional moments is presented. To evaluate failure theories for this material, tests were conducted on two fiber orientations [0, 90] and [45, −45] tubes. The results showed that for [0, 90] composites the S-N curves in pure bending and in pure torsion are sufficient to predict life. For [45, −45] tubes, the value of the normal stress interaction component of the strength tensor, H12, has to be obtained. If the ratio of the global flexural stress amplitude, A, to the accompanied global shear stress, B, is less than 2, the value of H12 may be taken as presented by Tsai-Hahn theory. But, if A/B ≥ 2, the value of H12 has to be obtained from [45, −45] pure bending S-N curve, since the failure mode is a combination of interfacial shear and matrix failure. The out-of-phase loading results showed that the life of the specimens at high stress levels is less than that for the in-phase loading with the same peak values A and B.
ISSN:0094-4289
1528-8889
DOI:10.1115/1.2805991