Loading…

Combining predatory mites and film mulching to control Bradysia cellarum (Diptera: Sciaridae) on Chinese chives, Allium tuberosum

The subterranean insect Bradysia cellarum Frey (Diptera: Sciaridae) is a notorious and major pest of Chinese chives, Allium tuberosum Rottler ex Sprengle (Amaryllidaceae) in China. Current chemical control of B. cellarum results in low insecticide efficacy, high cost and pesticide resistance, theref...

Full description

Saved in:
Bibliographic Details
Published in:Experimental & applied acarology 2022, Vol.86 (1), p.117-127
Main Authors: Yan, Hong, Zhang, Bo, Wang, Endong, Xu, Xuenong, Wei, Guo-Shu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The subterranean insect Bradysia cellarum Frey (Diptera: Sciaridae) is a notorious and major pest of Chinese chives, Allium tuberosum Rottler ex Sprengle (Amaryllidaceae) in China. Current chemical control of B. cellarum results in low insecticide efficacy, high cost and pesticide resistance, therefore there is an urgent need for sustainable management. Here, greenhouse experiments were conducted to evaluate the potential biocontrol agent Stratiolaelaps scimitus Womersley (Acari: Laelapidae) against B. cellarum . The number of B. cellarum larvae in soil declined from 17.6 to 0 in 4 months after releasing predatory mites in high density (5,000 adults per row); treatment was less effective under low densities of 2500 adults per row. To determine whether S. scimitus can be used in combination with soil solarization by film mulching over 40 °C for 4 h, we also evaluated heat tolerance of S. scimitus in laboratory and its control efficacy against B. cellarum after high-temperature treatment mimicking the film mulching in greenhouse. As our results showed that egg hatchability of S. scimitus was 2.6% at 38 °C and adult survival rate was 2% at 40 °C for 4 h, respectively, we concluded S. scimitus was largely inviable and could not reproduce at 40 °C. This temperature was the baseline of soil solarization, suggesting predatory mites should be released after soil solarization. When using S. scimitus after soil solarization or when using soil solarization as single treatment, fly larvae declined similarly from initial density of 18 to 0 or 17.2 to 0, respectively, within a month. Thus, our study suggests the potential of S. scimitus as a biocontrol agent of B. cellarum in greenhouse, and the most effective strategy is to combine film mulching and predatory mites (after soil heating) to control B. cellarum in chive productions.
ISSN:0168-8162
1572-9702
DOI:10.1007/s10493-021-00681-9