Loading…

Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect

[Display omitted] Flexible triboelectric generators present a wide range of prospective applications owing to their small size, light weight, and wearability; in addition, they can convert external mechanical energy into electrical energy to provide an energy supply for wearable electronic products....

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2022-02, Vol.608 (Pt 3), p.2339-2346
Main Authors: Tao, Xuejiao, Zhou, Yuman, Qi, Kun, Guo, Chaozhong, Dai, Yunling, He, Jianxin, Dai, Zhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Flexible triboelectric generators present a wide range of prospective applications owing to their small size, light weight, and wearability; in addition, they can convert external mechanical energy into electrical energy to provide an energy supply for wearable electronic products. In this study, a wearable textile triboelectric generator was developed by weaving polyurethane (PU) nanofiber core-spun yarn and Si3N4-electret-doped polyvinylidene fluoride (PVDF) nanofiber core-spun yarn into a double-layer fabric. Within the double-layer fabric, one layer was Si3N4-doped PVDF (denoted as Si3N4@PVDF) nanofiber fabric, and the other was PU nanofiber fabric. When subjected to an external mechanical force, PU nanofiber fabric and Si3N4@PVDF nanofiber fabric came into contact and were able to convert external mechanical energy into electrical energy. The most notable instantaneous electrical performance of this triboelectric nanogenerator was open circuit voltage of 71 V, short-circuit current of 0.7 μA, and output power of 56 μW. Additionally, the wearable textile triboelectric generator exhibited superior washability, stability, and cycle durability. More significantly, it was capable of driving some low-consumption electronic products, including capacitors, LED bulbs, and digital meters, thereby exhibiting a strong potential for flexible self-powered electronic devices and intelligent textiles.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.10.151