Loading…

High Temperature Requirement A (HtrA) protease of Listeria monocytogenes and its interaction with extracellular matrix molecules

ABSTRACT High Temperature Requirement A (HtrA) was identified as a secreted virulence factor in many pathogenic bacteria, including Listeria monocytogenes. Recently, it was discovered that Helicobacter pylori and Campylobacter jejuni HtrAs can directly cleave the human cell-adhesion molecule E-cadhe...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology letters 2021-11, Vol.368 (20), p.1
Main Authors: Radhakrishnan, Deepthi, M C, Amrutha, Hutterer, Evelyn, Wessler, Silja, Ponnuraj, Karthe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT High Temperature Requirement A (HtrA) was identified as a secreted virulence factor in many pathogenic bacteria, including Listeria monocytogenes. Recently, it was discovered that Helicobacter pylori and Campylobacter jejuni HtrAs can directly cleave the human cell-adhesion molecule E-cadherin, which facilitates bacterial transmigration. HtrAs also interact with extracellular matrix (ECM) molecules. However, only a limited number of studies have been carried out in this regard. In the present study, the protease and ECM binding properties of L. monocytogenes HtrA (LmHtrA) were studied using native rLmHtrA, catalytically inactive rLmHtrA(S343A) and rLmHtrA lacking the PDZ domain (∆PDZ) to gain more insights into HtrA–ECM molecule interaction. The results show that (1) native rLmHtrA cleaves fibrinogen, fibronectin, plasminogen and casein in a time and temperature dependent manner, (2) interaction of rLmHtrA with various host proteins was found in the micromolar to nanomolar range, (3) in the absence of PDZ domain, rLmHtrA exhibits no drastic change in binding affinity toward the host molecules when compared with native rLmHtrA and (4) the PDZ domain plays an important role in the substrate cleavage as rLmHtrA1-394∆PDZ cleaves the substrates only under certain conditions. The proteolysis of various ECM molecules by rLmHtrA possibly highlights the role of HtrA in L. monocytogenes pathogenesis involving ECM degradation. HtrA protease is a novel secreted virulence factor in many pathogenic bacteria. HtrA of L. monocytogenes cleaves many human host ECM proteins which possibly highlights its role in the pathogenesis of the bacterium.
ISSN:1574-6968
0378-1097
1574-6968
DOI:10.1093/femsle/fnab141