Loading…

Effects of itol A on the larval growth and development of Spodoptera frugiperda (Lepidoptera: Noctuidae)

BACKGROUND Itol A, extracted from Itoa orientalis Hemsl. (Flacourtiaceae), possesses bioactivity on Spodoptera litura (Lepidoptera: Noctuidae) and Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Our previous study showed that the effects on Spodoptera frugiperda, a destructive pest found worldwi...

Full description

Saved in:
Bibliographic Details
Published in:Pest management science 2022-01, Vol.78 (1), p.134-142
Main Authors: Xu, Lin, Meng, Xiao‐Long, Bangash, Saqib Hussain, Zhang, Fan, Zeng, Dong‐Qiang, Tang, Wen‐Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BACKGROUND Itol A, extracted from Itoa orientalis Hemsl. (Flacourtiaceae), possesses bioactivity on Spodoptera litura (Lepidoptera: Noctuidae) and Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Our previous study showed that the effects on Spodoptera frugiperda, a destructive pest found worldwide, were similar to those of fenoxycarb (FC), a juvenile hormone analog. Thus, we speculate that itol A could have growth‐regulating effects. The current work explored juvenile hormone (JH) levels and mRNA levels of crucial JH signaling pathway enzyme genes in S. frugiperda larvae treated with itol A and FC. RESULTS Itol A caused severe growth obstacles in S. frugiperda, extended the larval duration and reduced the mean worm weight and body length rates. Three and 7 days after exposure to a sublethal concentration of itol A (500 mg L−1), the JH level of the larvae significantly decreased by 36.59% and 22.70%, respectively. qPCR inferred that the mRNA expression levels of crucial JH metabolism enzymes (SfJHE and SfJHEH) significantly increased by 6.58‐fold and 2.12‐fold, respectively, relative to the control group 3 days after treatment. CONCLUSIONS Itol A adversely affects the development of S. frugiperda. We propose that this effect was caused by decreasing JH levels and disrupting the JH signaling pathway via mediating its synthetic and metabolic crucial enzymes. © 2021 Society of Chemical Industry. Comprehend of the possible mechanism of action of itol A and an evaluation of its efficacy against S. frugiperda, providing direct implications for field pest management
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.6614