Loading…

Cyclic Imine Pinnatoxin G is Cytotoxic to Cancer Cell Lines via Nicotinic Acetylcholine Receptor-Driven Classical Apoptosis

Pinnatoxin G is a cyclic imine neurotoxin produced by dinoflagellates that has been reported in shellfish. Like other members of the pinnatoxin family, it has been shown to have its effects via antagonism of the nicotinic acetylcholine receptors, with preferential binding to the α7 subunit often upr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of natural products (Washington, D.C.) D.C.), 2021-07, Vol.84 (7), p.2035-2042
Main Authors: Clarke, Mitchell R, Jones, Ben, Squires, Chloe L. M, Imhoff, Floriane M, Harwood, D. Tim, Rhodes, Lesley, Selwood, Andrew I, McNabb, Paul S, Baird, Sarah K
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pinnatoxin G is a cyclic imine neurotoxin produced by dinoflagellates that has been reported in shellfish. Like other members of the pinnatoxin family, it has been shown to have its effects via antagonism of the nicotinic acetylcholine receptors, with preferential binding to the α7 subunit often upregulated in cancer. Because increased activity of α7 nicotinic acetylcholine receptors contributes to increased growth and resistance to apoptosis, the effect of pinnatoxin G on cancer cell viability was tested. In a panel of six cancer cell lines, all cell types lost viability, but HT29 colon cancer and LN18 and U373 glioma cell lines were more sensitive than MDA-MB-231 breast cancer cells, PC3 prostate cancer cells, and U87 glioma cells, correlating with expression levels of α7, α4, and α9 nicotinic acetylcholine receptors. Some loss of cell viability could be attributed to cell cycle arrest, but significant levels of classical apoptosis were found, characterized by caspase activity, phosphatidylserine exposure, mitochondrial membrane permeability, and fragmented DNA. Intracellular Ca2+ levels also dropped immediately upon pinnatoxin G treatment, which may relate to antagonism of nicotinic acetylcholine receptor-mediated Ca2+ inflow. In conclusion, pinnatoxin G can decrease cancer cell viability, with both cytostatic and cytotoxic effects.
ISSN:0163-3864
1520-6025
DOI:10.1021/acs.jnatprod.1c00418