Loading…

Novel Near-Infrared Light-Induced Triple-Shape Memory Composite Based on Poly(ethylene-co-vinyl alcohol) and Iron Tannate

Remote controllability and multiple-shape memory performance are two important functions for shape memory polymers (SMPs) in engineering applications, which are still a challenge to achieve via a facile approach. Herein, we synthesized a shape memory composite with near-infrared (NIR) light-induced...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-05, Vol.13 (19), p.23011-23019
Main Authors: Bai, Yongkang, Liu, Jiamei, Ju, Junping, Chen, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Remote controllability and multiple-shape memory performance are two important functions for shape memory polymers (SMPs) in engineering applications, which are still a challenge to achieve via a facile approach. Herein, we synthesized a shape memory composite with near-infrared (NIR) light-induced triple-shape memory performance by in situ formation of iron tannate (FeTA) nanoparticles in cross-linked poly­(ethylene-co-vinyl alcohol) (EVOH). EVOH possessed two transition temperatures enabling the composites with triple-shape memory behavior, while FeTA nanoparticles served as the photothermal conversion factor for NIR light-induced responsiveness. Because the light-induced triple-shape memory performance of the composite is highly dependent on its photothermal conversion property, the control of FeTA doping would also be an effective solution to prepare light-induced multiple-SMPs with various shape transformations. Moreover, the composites exhibited high light-driving recovery stress, which could lift burdens 1600 times heavier than their own weight, indicating their great potential as a smart soft actuator for various applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c05166