Loading…

Resveratrol induces AMPK and mTOR signaling inhibition-mediated autophagy and apoptosis in multiple myeloma cells

Resveratrol, a natural compound extracted from the skins of grapes, berries, or other fruits, has been shown to have anti-tumor effects against multiple myeloma (MM) via promoting apoptosis and inhibiting cell viability. In addition to apoptosis, autophagy also plays a significant role in anti-tumor...

Full description

Saved in:
Bibliographic Details
Published in:Acta biochimica et biophysica Sinica 2021-06, Vol.53 (6), p.775-783
Main Authors: Ma, Ruye, Yu, Dandan, Peng, Yu, Yi, Hongfei, Wang, Yingcong, Cheng, Taofang, Shi, Bingqing, Yang, Guang, Lai, Weiming, Wu, Xiaosong, Lu, Ye, Shi, Jumei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resveratrol, a natural compound extracted from the skins of grapes, berries, or other fruits, has been shown to have anti-tumor effects against multiple myeloma (MM) via promoting apoptosis and inhibiting cell viability. In addition to apoptosis, autophagy also plays a significant role in anti-tumor effects. However, whether autophagy is involved in anti-MM activity of resveratrol remains unclear. In this study, human MM cell lines U266, RPMI-8226, and NCI-H929 were treated with resveratrol. Cell Counting Kit-8 assay and colony formation assay were used to measure cell viability. Western blot analysis was used to detect apoptosis- and autophagy-associated proteins. 3-Methyladenine (3-MA) was applied to inhibit autophagy. Results showed that resveratrol inhibited cell viability and colony formation via promoting apoptosis and autophagy in MM cell lines U266, RPMI-8226, and NCI-H929. Resveratrol promoted apoptosis-related proteins, Caspase-3 activating poly-ADP-ribose polymerase and Caspase-3 cleavage, and decreased the protein level of Survivin in a dose-dependent manner. Additionally, resveratrol upregulated the levels of LC3 and Beclin1 in a dose-dependent way, indicating that autophagy might be implicated in anti-MM effect of resveratrol. Furthermore, 3-MA relieved the cytotoxicity of resveratrol by blocking the autophagic flux. Resveratrol increased the phosphorylation of adenosine monophosphate (AMP)-activated protein kinase and decreased the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream substrates p70S6K and 4EBP1 in a dose-dependent manner, leading to autophagy. Therefore, our results suggest that resveratrol exerts anti-MM effects through apoptosis and autophagy, which can be used as a new therapeutic strategy for MM in clinic.
ISSN:1672-9145
1745-7270
DOI:10.1093/abbs/gmab042