Loading…

Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England

The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England 1 , was first identified in the UK in late summer to early autumn 2020 2 . Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rap...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2021-05, Vol.593 (7858), p.266-269
Main Authors: Volz, Erik, Mishra, Swapnil, Chand, Meera, Barrett, Jeffrey C., Johnson, Robert, Geidelberg, Lily, Hinsley, Wes R., Laydon, Daniel J., Dabrera, Gavin, O’Toole, Áine, Amato, Robert, Ragonnet-Cronin, Manon, Harrison, Ian, Jackson, Ben, Ariani, Cristina V., Boyd, Olivia, Loman, Nicholas J., McCrone, John T., Gonçalves, Sónia, Jorgensen, David, Myers, Richard, Hill, Verity, Jackson, David K., Gaythorpe, Katy, Groves, Natalie, Sillitoe, John, Kwiatkowski, Dominic P., Flaxman, Seth, Ratmann, Oliver, Bhatt, Samir, Hopkins, Susan, Gandy, Axel, Rambaut, Andrew, Ferguson, Neil M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England 1 , was first identified in the UK in late summer to early autumn 2020 2 . Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number. Genetic and testing data from England show that the SARS-CoV-2 variant of concern B.1.1.7 has a transmission advantage over other lineages.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-021-03470-x