Loading…

Evaluation of Different Ionic Liquids as Additives in the Immobilization of Lipase CAL B by Sol-Gel Technique

Sol-gel technique aiming enzymatic immobilization in situ with ionic liquids as additives is poorly studied. In this process, the addition of the enzyme is carried out in the synthesis of the support. The characteristics of ionic liquids, such as low vapor pressure, thermal stability, and non-flamma...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology 2021-07, Vol.193 (7), p.2162-2181
Main Authors: Ficanha, Aline Matuella Moreira, Oro, Carolina Elisa Demaman, Franceschi, Elton, Dallago, Rogério Marcos, Mignoni, Marcelo Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sol-gel technique aiming enzymatic immobilization in situ with ionic liquids as additives is poorly studied. In this process, the addition of the enzyme is carried out in the synthesis of the support. The characteristics of ionic liquids, such as low vapor pressure, thermal stability, and non-flammability, make them strong candidates for use as immobilization additives. The objective of the present study was to immobilize the Candida antarctica B lipase by the sol-gel technique using ionic liquids as additives. The optimum points determined for ionic liquids 1-butyl-3-methylimidazolium chloride, 1-octyl-3-methylimidazolium bromide, and 1 hexadecyl-3-methylimimidazolium were 0.30, 0.27, and 0.22 g/mL of enzyme and 1.60, 1.52, and 1.52% of additive, respectively. The amount of enzyme and ionic liquids used in aerogel immobilization was the same as the optimized values in the xerogel immobilization process (for each ionic liquid). Ionic liquids proved to be good additives in the enzymatic immobilization process. Xerogel, regardless of the ionic liquid, presented a greater number of use cycles and better thermal stability compared to aerogel.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-021-03533-9