Loading…

Weavable Transparent Conductive Fibers with Harsh Environment Tolerance

Fiber and textile electronics provide a focus for a new generation of wearable electronics due to their unique lightness and flexibility. However, fabricating knittable fibers from conductive materials with high tensile and transparent properties remains a challenge, especially for applicability in...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-02, Vol.13 (7), p.8952-8959
Main Authors: Wang, Xiaochun, Chen, Guangxue, Cai, Ling, Li, Ren’ai, He, Minghui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fiber and textile electronics provide a focus for a new generation of wearable electronics due to their unique lightness and flexibility. However, fabricating knittable fibers from conductive materials with high tensile and transparent properties remains a challenge, especially for applicability in harsh environments. Here, we report a simple photopolymerization approach for the rapid preparation of a new type of a transparent conductive polymer fiber, poly­(polymerizable deep eutectic solvent (PDES)) fiber, which exhibits excellent stability at high/low temperature, in organic solvents, especially in dry environments, and overcomes the volatility and freezability of traditional gel materials. A poly­(PDES) fiber possesses outstanding mechanical and sensing properties, including negligible hysteresis and creep, fast resilience after a long stretch (10 min), and signal stability during high-frequency cyclic stretching (1 Hz, 10 000 cycles). In addition, the poly­(PDES) fibers are knitted into a plain-structured sensor on textile with breathability and high tolerance to damage, enabling stable and accurate monitoring of human stretching, bending, and rotation motions. Furthermore, its dry-cleaning resistance guarantees the feasibility of long-term monitoring, with the electrical signal remaining stable after five dry-cleaning cycles. These promising features of poly­(PDES) fibers will promote potential applications in the fields of human movement monitoring, intelligent fibers, and soft robotics.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c21912