Loading…

Hollow fiber liquid-phase microextraction combined with supercritical fluid chromatography coupled to mass spectrometry for multiclass emerging contaminant quantification in water samples

The hollow fiber liquid-phase microextraction allows highly selective concentration of organic compounds that are at trace levels. The determination of those analytes through the supercritical fluid chromatography usage is associated with many analytical benefits, which are significantly increased w...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2021-04, Vol.413 (9), p.2467-2479
Main Authors: Salvatierra-Stamp, Vilma del Carmen, Ceballos-Magaña, Silvia G., Pano-Farias, Norma Susana, Leyva-Morales, José Belisario, Pineda-Urbina, Kayim, Muñiz-Valencia, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-dd6262ca17722ff515d3a8e26eea7fa169459c802bd1e181919a6457f62d4af93
cites cdi_FETCH-LOGICAL-c451t-dd6262ca17722ff515d3a8e26eea7fa169459c802bd1e181919a6457f62d4af93
container_end_page 2479
container_issue 9
container_start_page 2467
container_title Analytical and bioanalytical chemistry
container_volume 413
creator Salvatierra-Stamp, Vilma del Carmen
Ceballos-Magaña, Silvia G.
Pano-Farias, Norma Susana
Leyva-Morales, José Belisario
Pineda-Urbina, Kayim
Muñiz-Valencia, Roberto
description The hollow fiber liquid-phase microextraction allows highly selective concentration of organic compounds that are at trace levels. The determination of those analytes through the supercritical fluid chromatography usage is associated with many analytical benefits, which are significantly increased when it is coupled to a mass spectrometry detector, thus providing an extremely sensitive analytical technique with minimal consumption of organic solvents. On account of this, a hollow fiber liquid-phase microextraction technique in two-phase mode combined with supercritical fluid chromatography coupled to mass spectrometry was developed for quantifying 19 multiclass emerging contaminants in water samples in a total chromatographic time of 5.5 min. The analytical method used 40 μL of 1-octanol placed in the porous-walled polypropylene fiber as the acceptor phase, and 1 L of water sample was the donor phase. After extraction and quantification techniques were optimized in detail, a good determination coefficient ( r 2  > 0.9905) in the range of 0.1 to 100 μg L −1 , for most of the analytes, and an enrichment factor in the range of 7 to 28,985 were obtained. The recovery percentage (%R) and intraday precision (%RSD) were in the range of 80.80–123.40%, and from 0.48 to 16.89%, respectively. Limit of detection and quantification ranged from 1.90 to 35.66 ng L −1 , and from 3.41 to 62.11 ng L −1 , respectively. Finally, the developed method was successfully used for the determination of the 19 multiclass emerging contaminants in superficial and wastewater samples.
doi_str_mv 10.1007/s00216-021-03202-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2486163543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656116770</galeid><sourcerecordid>A656116770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-dd6262ca17722ff515d3a8e26eea7fa169459c802bd1e181919a6457f62d4af93</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEoqXwAhyQJS5cUmwndpJjVQFFqsQFzpbXGe-68p-s7ajss_FyzHZLkTggS2PL8_3GnzzTNG8ZvWSUDh8LpZzJFkNLO055S58150yyseVS0OdP556fNa9KuaOUiZHJl81Z14mOT0ycN79ukvfpnli3gUy8269ubpedLkCCMznBz5q1qS5FYlLYuAgzuXd1R8q6QDbZVWe0J9YjR8wup6Br2ma97A4IrItHfU0k6FJIWcBUVEDNB2JTJmH1iPtjDgLkrYtbhGLVwUUdK9mvGJ3FFx4MuEjudUWbRQcsXF43L6z2Bd487hfNj8-fvl_ftLffvny9vrptTS9YbedZcsmNZsPAubWCibnTI3AJoAermZx6MZmR8s3MgI1sYpOWvRis5HOv7dRdNB9OdZec9iuUqoIrBrzXEdJaFO9HyWQn-g6l7_-R3qU1R3SnuKA9vsUoQ9XlSbXVHpSLNh0_GdcM-OkpgnV4fyWFZEwOA0WAnwDsSCkZrFqyCzofFKPqOAvqNAsKg3qYBXWE3j16WTcB5ifkT_NR0J0EBVNxC_mv2f-U_Q34KcRn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504169101</pqid></control><display><type>article</type><title>Hollow fiber liquid-phase microextraction combined with supercritical fluid chromatography coupled to mass spectrometry for multiclass emerging contaminant quantification in water samples</title><source>Springer Link</source><creator>Salvatierra-Stamp, Vilma del Carmen ; Ceballos-Magaña, Silvia G. ; Pano-Farias, Norma Susana ; Leyva-Morales, José Belisario ; Pineda-Urbina, Kayim ; Muñiz-Valencia, Roberto</creator><creatorcontrib>Salvatierra-Stamp, Vilma del Carmen ; Ceballos-Magaña, Silvia G. ; Pano-Farias, Norma Susana ; Leyva-Morales, José Belisario ; Pineda-Urbina, Kayim ; Muñiz-Valencia, Roberto</creatorcontrib><description>The hollow fiber liquid-phase microextraction allows highly selective concentration of organic compounds that are at trace levels. The determination of those analytes through the supercritical fluid chromatography usage is associated with many analytical benefits, which are significantly increased when it is coupled to a mass spectrometry detector, thus providing an extremely sensitive analytical technique with minimal consumption of organic solvents. On account of this, a hollow fiber liquid-phase microextraction technique in two-phase mode combined with supercritical fluid chromatography coupled to mass spectrometry was developed for quantifying 19 multiclass emerging contaminants in water samples in a total chromatographic time of 5.5 min. The analytical method used 40 μL of 1-octanol placed in the porous-walled polypropylene fiber as the acceptor phase, and 1 L of water sample was the donor phase. After extraction and quantification techniques were optimized in detail, a good determination coefficient ( r 2  &gt; 0.9905) in the range of 0.1 to 100 μg L −1 , for most of the analytes, and an enrichment factor in the range of 7 to 28,985 were obtained. The recovery percentage (%R) and intraday precision (%RSD) were in the range of 80.80–123.40%, and from 0.48 to 16.89%, respectively. Limit of detection and quantification ranged from 1.90 to 35.66 ng L −1 , and from 3.41 to 62.11 ng L −1 , respectively. Finally, the developed method was successfully used for the determination of the 19 multiclass emerging contaminants in superficial and wastewater samples.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-021-03202-0</identifier><identifier>PMID: 33532915</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>1-Octanol ; Analytical Chemistry ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Contaminants ; Food Science ; Ions ; Laboratory Medicine ; Liquid chromatography ; Liquid phases ; Mass spectrometry ; Mass spectroscopy ; Mathematical analysis ; Methods ; Monitoring/Environmental Analysis ; Octanol ; Organic compounds ; Organic solvents ; Polypropylene ; Research Paper ; Scientific imaging ; Spectroscopy ; Supercritical fluids ; Trace levels ; Wastewater ; Wastewater pollution ; Water analysis ; Water pollution ; Water sampling</subject><ispartof>Analytical and bioanalytical chemistry, 2021-04, Vol.413 (9), p.2467-2479</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-dd6262ca17722ff515d3a8e26eea7fa169459c802bd1e181919a6457f62d4af93</citedby><cites>FETCH-LOGICAL-c451t-dd6262ca17722ff515d3a8e26eea7fa169459c802bd1e181919a6457f62d4af93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33532915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salvatierra-Stamp, Vilma del Carmen</creatorcontrib><creatorcontrib>Ceballos-Magaña, Silvia G.</creatorcontrib><creatorcontrib>Pano-Farias, Norma Susana</creatorcontrib><creatorcontrib>Leyva-Morales, José Belisario</creatorcontrib><creatorcontrib>Pineda-Urbina, Kayim</creatorcontrib><creatorcontrib>Muñiz-Valencia, Roberto</creatorcontrib><title>Hollow fiber liquid-phase microextraction combined with supercritical fluid chromatography coupled to mass spectrometry for multiclass emerging contaminant quantification in water samples</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>The hollow fiber liquid-phase microextraction allows highly selective concentration of organic compounds that are at trace levels. The determination of those analytes through the supercritical fluid chromatography usage is associated with many analytical benefits, which are significantly increased when it is coupled to a mass spectrometry detector, thus providing an extremely sensitive analytical technique with minimal consumption of organic solvents. On account of this, a hollow fiber liquid-phase microextraction technique in two-phase mode combined with supercritical fluid chromatography coupled to mass spectrometry was developed for quantifying 19 multiclass emerging contaminants in water samples in a total chromatographic time of 5.5 min. The analytical method used 40 μL of 1-octanol placed in the porous-walled polypropylene fiber as the acceptor phase, and 1 L of water sample was the donor phase. After extraction and quantification techniques were optimized in detail, a good determination coefficient ( r 2  &gt; 0.9905) in the range of 0.1 to 100 μg L −1 , for most of the analytes, and an enrichment factor in the range of 7 to 28,985 were obtained. The recovery percentage (%R) and intraday precision (%RSD) were in the range of 80.80–123.40%, and from 0.48 to 16.89%, respectively. Limit of detection and quantification ranged from 1.90 to 35.66 ng L −1 , and from 3.41 to 62.11 ng L −1 , respectively. Finally, the developed method was successfully used for the determination of the 19 multiclass emerging contaminants in superficial and wastewater samples.</description><subject>1-Octanol</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Contaminants</subject><subject>Food Science</subject><subject>Ions</subject><subject>Laboratory Medicine</subject><subject>Liquid chromatography</subject><subject>Liquid phases</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Monitoring/Environmental Analysis</subject><subject>Octanol</subject><subject>Organic compounds</subject><subject>Organic solvents</subject><subject>Polypropylene</subject><subject>Research Paper</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Supercritical fluids</subject><subject>Trace levels</subject><subject>Wastewater</subject><subject>Wastewater pollution</subject><subject>Water analysis</subject><subject>Water pollution</subject><subject>Water sampling</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9ks9u1DAQxiMEoqXwAhyQJS5cUmwndpJjVQFFqsQFzpbXGe-68p-s7ajss_FyzHZLkTggS2PL8_3GnzzTNG8ZvWSUDh8LpZzJFkNLO055S58150yyseVS0OdP556fNa9KuaOUiZHJl81Z14mOT0ycN79ukvfpnli3gUy8269ubpedLkCCMznBz5q1qS5FYlLYuAgzuXd1R8q6QDbZVWe0J9YjR8wup6Br2ma97A4IrItHfU0k6FJIWcBUVEDNB2JTJmH1iPtjDgLkrYtbhGLVwUUdK9mvGJ3FFx4MuEjudUWbRQcsXF43L6z2Bd487hfNj8-fvl_ftLffvny9vrptTS9YbedZcsmNZsPAubWCibnTI3AJoAermZx6MZmR8s3MgI1sYpOWvRis5HOv7dRdNB9OdZec9iuUqoIrBrzXEdJaFO9HyWQn-g6l7_-R3qU1R3SnuKA9vsUoQ9XlSbXVHpSLNh0_GdcM-OkpgnV4fyWFZEwOA0WAnwDsSCkZrFqyCzofFKPqOAvqNAsKg3qYBXWE3j16WTcB5ifkT_NR0J0EBVNxC_mv2f-U_Q34KcRn</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Salvatierra-Stamp, Vilma del Carmen</creator><creator>Ceballos-Magaña, Silvia G.</creator><creator>Pano-Farias, Norma Susana</creator><creator>Leyva-Morales, José Belisario</creator><creator>Pineda-Urbina, Kayim</creator><creator>Muñiz-Valencia, Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20210401</creationdate><title>Hollow fiber liquid-phase microextraction combined with supercritical fluid chromatography coupled to mass spectrometry for multiclass emerging contaminant quantification in water samples</title><author>Salvatierra-Stamp, Vilma del Carmen ; Ceballos-Magaña, Silvia G. ; Pano-Farias, Norma Susana ; Leyva-Morales, José Belisario ; Pineda-Urbina, Kayim ; Muñiz-Valencia, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-dd6262ca17722ff515d3a8e26eea7fa169459c802bd1e181919a6457f62d4af93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-Octanol</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Contaminants</topic><topic>Food Science</topic><topic>Ions</topic><topic>Laboratory Medicine</topic><topic>Liquid chromatography</topic><topic>Liquid phases</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Monitoring/Environmental Analysis</topic><topic>Octanol</topic><topic>Organic compounds</topic><topic>Organic solvents</topic><topic>Polypropylene</topic><topic>Research Paper</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Supercritical fluids</topic><topic>Trace levels</topic><topic>Wastewater</topic><topic>Wastewater pollution</topic><topic>Water analysis</topic><topic>Water pollution</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvatierra-Stamp, Vilma del Carmen</creatorcontrib><creatorcontrib>Ceballos-Magaña, Silvia G.</creatorcontrib><creatorcontrib>Pano-Farias, Norma Susana</creatorcontrib><creatorcontrib>Leyva-Morales, José Belisario</creatorcontrib><creatorcontrib>Pineda-Urbina, Kayim</creatorcontrib><creatorcontrib>Muñiz-Valencia, Roberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvatierra-Stamp, Vilma del Carmen</au><au>Ceballos-Magaña, Silvia G.</au><au>Pano-Farias, Norma Susana</au><au>Leyva-Morales, José Belisario</au><au>Pineda-Urbina, Kayim</au><au>Muñiz-Valencia, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow fiber liquid-phase microextraction combined with supercritical fluid chromatography coupled to mass spectrometry for multiclass emerging contaminant quantification in water samples</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>413</volume><issue>9</issue><spage>2467</spage><epage>2479</epage><pages>2467-2479</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>The hollow fiber liquid-phase microextraction allows highly selective concentration of organic compounds that are at trace levels. The determination of those analytes through the supercritical fluid chromatography usage is associated with many analytical benefits, which are significantly increased when it is coupled to a mass spectrometry detector, thus providing an extremely sensitive analytical technique with minimal consumption of organic solvents. On account of this, a hollow fiber liquid-phase microextraction technique in two-phase mode combined with supercritical fluid chromatography coupled to mass spectrometry was developed for quantifying 19 multiclass emerging contaminants in water samples in a total chromatographic time of 5.5 min. The analytical method used 40 μL of 1-octanol placed in the porous-walled polypropylene fiber as the acceptor phase, and 1 L of water sample was the donor phase. After extraction and quantification techniques were optimized in detail, a good determination coefficient ( r 2  &gt; 0.9905) in the range of 0.1 to 100 μg L −1 , for most of the analytes, and an enrichment factor in the range of 7 to 28,985 were obtained. The recovery percentage (%R) and intraday precision (%RSD) were in the range of 80.80–123.40%, and from 0.48 to 16.89%, respectively. Limit of detection and quantification ranged from 1.90 to 35.66 ng L −1 , and from 3.41 to 62.11 ng L −1 , respectively. Finally, the developed method was successfully used for the determination of the 19 multiclass emerging contaminants in superficial and wastewater samples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33532915</pmid><doi>10.1007/s00216-021-03202-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2021-04, Vol.413 (9), p.2467-2479
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_2486163543
source Springer Link
subjects 1-Octanol
Analytical Chemistry
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chromatography
Contaminants
Food Science
Ions
Laboratory Medicine
Liquid chromatography
Liquid phases
Mass spectrometry
Mass spectroscopy
Mathematical analysis
Methods
Monitoring/Environmental Analysis
Octanol
Organic compounds
Organic solvents
Polypropylene
Research Paper
Scientific imaging
Spectroscopy
Supercritical fluids
Trace levels
Wastewater
Wastewater pollution
Water analysis
Water pollution
Water sampling
title Hollow fiber liquid-phase microextraction combined with supercritical fluid chromatography coupled to mass spectrometry for multiclass emerging contaminant quantification in water samples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T14%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20fiber%20liquid-phase%20microextraction%20combined%20with%20supercritical%20fluid%20chromatography%20coupled%20to%20mass%20spectrometry%20for%20multiclass%20emerging%20contaminant%20quantification%20in%20water%20samples&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Salvatierra-Stamp,%20Vilma%20del%20Carmen&rft.date=2021-04-01&rft.volume=413&rft.issue=9&rft.spage=2467&rft.epage=2479&rft.pages=2467-2479&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-021-03202-0&rft_dat=%3Cgale_proqu%3EA656116770%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-dd6262ca17722ff515d3a8e26eea7fa169459c802bd1e181919a6457f62d4af93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2504169101&rft_id=info:pmid/33532915&rft_galeid=A656116770&rfr_iscdi=true