Loading…

Prospective enzymes for omega-3 PUFA biosynthesis found in endoparasitic classes within the phylum Platyhelminthes

The free-living infectious stages of macroparasites, specifically, the cercariae of trematodes (flatworms), are likely to be significant (albeit underappreciated) vectors of nutritionally important polyunsaturated fatty acids (PUFA) to consumers within aquatic food webs, and other macroparasites cou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of helminthology 2020, Vol.94, p.e212-e212, Article e212
Main Authors: Babaran, D., Arts, M.T., Botelho, R.J., Locke, S.A., Koprivnikar, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The free-living infectious stages of macroparasites, specifically, the cercariae of trematodes (flatworms), are likely to be significant (albeit underappreciated) vectors of nutritionally important polyunsaturated fatty acids (PUFA) to consumers within aquatic food webs, and other macroparasites could serve similar roles. In the context of de novo omega-3 (n-3) PUFA biosynthesis, it was thought that most animals lack the fatty acid (FA) desaturase enzymes that convert stearic acid (18:0) into É‘-linolenic acid (ALA; 18:3n-3), the main FA precursor for n-3 long-chain PUFA. Recently, novel sequences of these enzymes were recovered from 80 species from six invertebrate phyla, with experimental confirmation of gene function in five phyla. Given this wide distribution, and the unusual attributes of flatworm genomes, we conducted an additional search for genes for de novo n-3 PUFA in the phylum Platyhelminthes. Searches with experimentally confirmed sequences from Rotifera recovered nine relevant FA desaturase sequences from eight species in four genera in the two exclusively endoparasite classes (Trematoda and Cestoda). These results could indicate adaptations of these particular parasite species, or may reflect the uneven taxonomic coverage of sequence databases. Although additional genomic data and, particularly, experimental study of gene functionality are important future validation steps, our results indicate endoparasitic platyhelminths may have enzymes for de novo n-3 PUFA biosynthesis, thereby contributing to global PUFA production, but also representing a potential target for clinical antihelmintic applications.
ISSN:0022-149X
1475-2697
DOI:10.1017/S0022149X20000954