Loading…

Insights into the photocatalysis mechanism of the novel 2D/3D Z-Scheme g-C3N4/SnS2 heterojunction photocatalysts with excellent photocatalytic performances

[Display omitted] •g-C3N4/SnS2 shows superior photocatalytic activity for the removal of Cr6+ and BPS.•The photocatalytic degradation pathway of BPS is proposed based on the result of GC–MS.•DFT displays the band distribution of g-C3N4/SnS2 is staggered near the forbidden.•Z-scheme photocatalysis me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2021-01, Vol.402, p.123711-123711, Article 123711
Main Authors: Zhao, Wei, Li, Yajuan, Zhao, Pushu, Zhang, Lili, Dai, Benlin, Huang, Haibao, Zhou, Jianli, Zhu, Yukun, Ma, Kuirong, Leung, Dennis Y.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •g-C3N4/SnS2 shows superior photocatalytic activity for the removal of Cr6+ and BPS.•The photocatalytic degradation pathway of BPS is proposed based on the result of GC–MS.•DFT displays the band distribution of g-C3N4/SnS2 is staggered near the forbidden.•Z-scheme photocatalysis mechanism is proposed based on the results of experiments and simulations. A novel 2D/3D Z-scheme g-C3N4/SnS2 photocatalyst was successfully fabricated via self-assembly forming 3D flower-like SnS2 microspheres on the surface of the 2D g-C3N4 nanosheets. The photocatalytic performances of the samples were systematically explored through catalytic reduction of Cr6+ and oxidation of Bisphenol S (BPS) under the illumination of visible light, and the photocatalytic degradation pathway of BPS was also proposed based on the degradation products confirmed by GCMS. Among the as-prepared samples, 0.4-g-C3N4/SnS2 exhibited the most efficient photocatalytic performances, and the apparent quantum efficiency (QE) for the removal of Cr6+ could achieve 30.3 %, which is 2.8 times higher than that of the SnS2. The enhancing photocatalytic activities originated from the efficient interfacial charge migration and separation obtained in g-C3N4/SnS2, which was firstly verified via the photoluminescence spectra, time-resolved photoluminescence spectra and photoelectrochemical characterizations. Importantly, the DFT calculated shows that the band distribution of the g-C3N4/SnS2 sample is staggered near the forbidden, which can facilitate the efficient interfacial charge migration and separation as well as result in the improvement of the catalytic activity. Finally, we put forward a more reasonable Z-scheme charge transfer mechanism, it was verified by analysing the results of free radical scavenging tests, EPR experiments and theoretical calculations.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2020.123711