Loading…

Short communication: Effect of pH on the heat stability of reconstituted reduced calcium milk protein concentrate dispersions

This study aimed to investigate the heat stability of dispersions from reconstituted reduced-calcium milk protein concentrate (RCMPC) with 80% protein or more. The tested RCMPC powders were produced from skim milk subjected to CO2 treatment before and during the process of ultrafiltration. The CO2 i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2021-01, Vol.104 (1), p.134-137
Main Authors: Sunkesula, V., Kommineni, A., Meletharayil, G.H., Marella, C., Metzger, L.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to investigate the heat stability of dispersions from reconstituted reduced-calcium milk protein concentrate (RCMPC) with 80% protein or more. The tested RCMPC powders were produced from skim milk subjected to CO2 treatment before and during the process of ultrafiltration. The CO2 injection was controlled to obtain 0 (control, no CO2 injection), 20, 30, and 40% reduction in calcium levels in the RCMPC powders. The RCMPC powders were reconstituted to 10% (wt/wt) protein in deionized water. These dispersions were tested for heat stability in a rocking oil bath at 140°C at unadjusted, 6.5, 6.7, 6.9, and 7.1 pH. Calcium ion activity (CIA) and ionic strength measurements were carried out using a Ca ion-selective electrode and conductivity meter. Unadjusted pH of the dispersions varied from 6.8 in control to 5.96 in 40% RCMPC dispersions. The CIA of unadjusted dispersions ranged from 1.31 mM in control to 2.83 mM in 40% RCMPC. Heat stability, expressed as heat coagulation time (HCT) of unadjusted dispersions decreased as the level of Ca removal in powders increased (from 13.81 min in control to 0.46 min in 40% RCMPC) and was negatively correlated with the CIA of the dispersions. For control RCMPC dispersions, the minimum and maximum heat stability were observed at dispersion pH of 6.5 and 6.9, respectively, followed by a decrease at pH 7.1 (CIA was the lowest). Dispersions from 40% RCMPC and pH 7.1 had the maximum HCT of 30.94 min among all RCMPC dispersions at all pH values. From this study, it can be concluded that improved heat stability in high protein formulation beverages subjected to UHT processing could be achieved through calcium reduction in milk protein concentrates using CO2 injection.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2020-18937