Loading…

Large-scale brain networks underlying non-spatial attention updating: Towards understanding the function of the temporoparietal junction

The temporoparietal junction (TPJ) and related areas are activated when a target stimulus appears at unexpected locations in Posner's spatial-cueing paradigm, and also when deviant stimuli are presented within a series of standard events in oddball paradigms. This type of activation corresponds...

Full description

Saved in:
Bibliographic Details
Published in:Cortex 2020-12, Vol.133, p.247-265
Main Authors: Jurewicz, Katarzyna, Paluch, Katarzyna, Wolak, Tomasz, Wróbel, Andrzej
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The temporoparietal junction (TPJ) and related areas are activated when a target stimulus appears at unexpected locations in Posner's spatial-cueing paradigm, and also when deviant stimuli are presented within a series of standard events in oddball paradigms. This type of activation corresponds to the ventral attention network (VAN), for regions defined on the basis of the spatial task. However, involvement of the VAN in object-based updating of attention has rarely been examined. In the present study, we used functional magnetic resonance imaging to investigate brain responses to (i) invalid targets after category-cueing and (ii) neutrally cued targets deviating in category from the background series of pictures. Bilateral TPJ activation was observed in response to invalidly cued targets, as compared to neutrally cued targets. Reference to the main large-scale brain networks showed that peaks of this activation located in the angular gyrus and inferior parietal lobule belonged to the default mode (DMN) and fronto-parietal networks (FPN), respectively. We found that VAN regions were involved only for simple detection activity. We conclude that spatial and non-spatial reorienting of attention rely on different network underpinnings. Our data suggest that DMN and FPN activity may support the ability to disengage from contextually irrelevant information.
ISSN:0010-9452
1973-8102
DOI:10.1016/j.cortex.2020.09.023