Loading…

The different anion transport capability of prodiginine- and tambjamine-like molecules

Prodiginines and tambjamines are anion-selective ionophores capable of facilitating the transport of anions across the plasma membrane in mammalian cells. One of the potential applications of these anionophores is the possibility of employing them as a substitutive therapy for pathologies involving...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmacology 2020-12, Vol.889, p.173592-173592, Article 173592
Main Authors: Fiore, Michele, García-Valverde, María, Carreira-Barral, Israel, Moran, Oscar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prodiginines and tambjamines are anion-selective ionophores capable of facilitating the transport of anions across the plasma membrane in mammalian cells. One of the potential applications of these anionophores is the possibility of employing them as a substitutive therapy for pathologies involving anion channels, as in cystic fibrosis. We have studied the interaction of a large anion as gluconate with three prodiginine- and two tambjamine-like compounds. Apparent dissociation constants for the chloride, iodide and gluconate complexes were estimated from iodide influx experiments in mammalian cells exposed to different extracellular anion combinations. Our experiments indicate that gluconate is not transported by the prodiginines, leaving the anionophores free to transport chloride and iodide. Conversely, gluconate would be transported to some extent by the tambjamines, competing with halides for the anionophores, and consequently reducing their flux. This might be related to the different structural features of both families of compounds. These data have important implications for the selection of impermeable anions in the analysis of the anionophore mechanism.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2020.173592