Loading…

Kinetics and Thermodynamics of Killing a Quantum Dot

Light-emitting nanocrystal quantum dots (QDs) are of high interest for use as down-conversion phosphors and direct emission sources in bulk solid-state devices and as reliable sources of single photons in quantum information science. However, these materials are prone to photooxidation that reduces...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-07, Vol.12 (27), p.30695-30701
Main Authors: Orfield, Noah J, Majumder, Somak, Hu, Zhongjian, Koh, Faith Yik-Ching, Htoon, Han, Hollingsworth, Jennifer A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Light-emitting nanocrystal quantum dots (QDs) are of high interest for use as down-conversion phosphors and direct emission sources in bulk solid-state devices and as reliable sources of single photons in quantum information science. However, these materials are prone to photooxidation that reduces the emission quantum yield over time. Current commercial applications use device architectures to prevent oxidation without addressing the underlying degradation reactions at the nanocrystal level. To instead prevent loss of functionality by better synthetic engineering of the nanoscale emitters themselves, the underlying properties of these reactions must be understood and readily accessible. Here, we use solid-state spectroscopy to obtain kinetic and thermodynamic parameters of photothermal degradation in single QDs by systematically varying the ambient temperature and photon pump fluence. We describe the resulting degradation in emission with a modified form of the Arrhenius equation and show that this reaction proceeds via pseudo-zero-order reaction kinetics by a surface-assisted process with an activation energy of 60 kJ/mol. We note that the rate of degradation is ∼12 orders of magnitude slower than the rate of excitonic processes, indicating that the reaction rate is not determined by electron or hole trapping. In the search for new robust light-emitting nanocrystals, the reported analysis method will enable direct comparisons between differently engineered nanomaterials.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c05980