Loading…

Tracking changes in soil organic carbon across the heterogeneous agricultural landscape of the Lower Fraser Valley of British Columbia

Increasing soil organic carbon (SOC) can improve the capacity of agricultural systems to both adapt to and mitigate climate change. Despite its importance, the current understanding of the magnitude or even the direction of SOC change in agricultural landscapes is limited. While changes in land use/...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2020-08, Vol.732, p.138994-138994, Article 138994
Main Authors: Paul, S.S., Dowell, L., Coops, N.C., Johnson, M.S., Krzic, M., Geesing, D., Smukler, S.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increasing soil organic carbon (SOC) can improve the capacity of agricultural systems to both adapt to and mitigate climate change. Despite its importance, the current understanding of the magnitude or even the direction of SOC change in agricultural landscapes is limited. While changes in land use/land cover (LULC) and climate are among the main drivers of changes in SOC, their relative importance for the spatiotemporal assessment of SOC is unclear. This study evaluated LULC and SOC dynamics using archived and recent soil samples, remote sensing, and digital soil mapping in the Lower Fraser Valley of British Columbia, Canada. We combined both pixel- and object-based analysis of Landsat satellite imagery to assess LULC changes from 1984 to 2018. We achieved an overall accuracy of 81% and kappa coefficient of 0.77 for LULC classification using a random forest model. For predicting SOC for the same time period, we applied soil and vegetation indices derived from Landsat images, topographic indices, historic soil survey variables, and climate data in a random forest model. The SOC prediction of 2018 resulted in a coefficient of determination (R2) of 0.67, concordance correlation coefficient (CCC) of 0.76, and normalized root mean square error (nRMSE) of 0.12. For 1984, the SOC prediction accuracies were 0.46, 0.58, and 0.18 for R2, CCC, and nRMSE, respectively. We detected SOC loss in 61%, gain in 12%, while 27% remained unchanged across the study area. Although we detected large losses of SOC due to LULC change, the majority of the SOC losses across the landscape were attributed to areas that were remained in the same type of agricultural production since 1984. Climate variability did not, however, have a strong effect on SOC changes. These results can inform decision making in the study area to support sustainable LULC management for enhancing SOC sequestration. [Display omitted] •We applied static-empirical modeling to assess SOC changes with relatively high accuracy.•SOC losses were detected across 61% of the area with a mean annual loss of 0.41%/year (median − 0.34%/year).•LULC changes were identified as the largest driver of SOC loss.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.138994