Loading…

Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination

Multivalent glycosystems are potential candidates for anti-adhesive therapy, a non-lethal approach against the ever increasing antibiotic resistance of pathogenic bacteria. In order to fine-tune the glyconanomaterial size and shape for selective bacterial cell agglutination, herein we report the syn...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2016-03, Vol.4 (11), p.2028-2037
Main Authors: Cid Martín, J J, Assali, M, Fernández-García, E, Valdivia, V, Sánchez-Fernández, E M, Garcia Fernández, J M, Wellinger, R E, Fernández, I, Khiar, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multivalent glycosystems are potential candidates for anti-adhesive therapy, a non-lethal approach against the ever increasing antibiotic resistance of pathogenic bacteria. In order to fine-tune the glyconanomaterial size and shape for selective bacterial cell agglutination, herein we report the synthesis of sugar-coated dynamic and polymeric 3D-micelles and 1D-carbon nanotubes. The reported shot-gun like synthetic approach is based on the ability of diacetylenic-based neoglycolipids to self-assemble into micelles in water and hierarchically self-assemble into hemimicelles on a single-walled carbon nanotube surface. The affinity of the nanosystems was preliminarily assessed by enzyme-linked lectin assay (ELLA) using the mannose-specific Concanavalin A lectin as a model receptor. Relative binding potency enhancements, compared to methyl α-d-mannopyranoside used as control, from 10- to 25- to 2340-folds in sugar molar basis were observed when passing from 3D dynamic micelles to static micelles, to 1D-mannose coated carbon nanotubes, respectively, indicative of a significant cluster glycoside effect. Importantly, these results were confirmed in vivo showing that the 1D-glyconanoring-coated carbon nanotubes efficiently and selectively regulate the agglutination and proliferation of the enterobacteria Escherichia coli type 1 fimbriae. These findings highlight the potential of sugar coated nano-materials as novel and effective tools in the control of bacterial pathogenesis.
ISSN:2050-750X
2050-7518
DOI:10.1039/c5tb02488a