Loading…

Quantitative Analysis of Infrared Spectra of Binary Alcohol + Cyclohexane Solutions with Quantum Chemical Calculations

Hydrogen bonding has profound effects on the behavior of molecules. Fourier-transform infrared spectroscopy is the technique most commonly used to qualitatively identify hydrogen-bonding moieties present in a chemical sample. However, quantitative analysis of infrared (IR) spectra is nontrivial for...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-04, Vol.124 (16), p.3077-3089
Main Authors: Bala, Aseel M, Killian, William G, Plascencia, Cesar, Storer, Jackson A, Norfleet, Andrew T, Peereboom, Lars, Jackson, James E, Lira, Carl T
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogen bonding has profound effects on the behavior of molecules. Fourier-transform infrared spectroscopy is the technique most commonly used to qualitatively identify hydrogen-bonding moieties present in a chemical sample. However, quantitative analysis of infrared (IR) spectra is nontrivial for the hydroxyl stretching region where hydrogen bonding is most prominently expressed in organic alcohols and water. Specifically, the breadth and extreme overlap of the O–H stretching bands, and the order of magnitude variability of their IR attenuation coefficients complicates the analysis. In the present work, sequential molecular dynamics simulations and quantum mechanical calculations are used to develop a function to relate the integrated IR attenuation coefficient to the vibrational frequencies of hydroxyl bands across the O–H stretching region. This relationship is then used as a guide to develop an attenuation coefficient scaling function to quantitatively determine concentrations of alcohols in a hydrocarbon solution from experimental IR spectra by integration across the entire hydroxyl frequency range.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.9b11245