Loading…

Distributed dual vigilance fuzzy adaptive resonance theory learns online, retrieves arbitrarily-shaped clusters, and mitigates order dependence

This paper presents a novel adaptive resonance theory (ART)-based modular architecture for unsupervised learning, namely the distributed dual vigilance fuzzy ART (DDVFA). DDVFA consists of a global ART system whose nodes are local fuzzy ART modules. It is equipped with distributed higher-order activ...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2020-01, Vol.121, p.208-228
Main Authors: Brito da Silva, Leonardo Enzo, Elnabarawy, Islam, Wunsch, Donald C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a novel adaptive resonance theory (ART)-based modular architecture for unsupervised learning, namely the distributed dual vigilance fuzzy ART (DDVFA). DDVFA consists of a global ART system whose nodes are local fuzzy ART modules. It is equipped with distributed higher-order activation and match functions and a dual vigilance mechanism. Together, these allow DDVFA to perform unsupervised modularization, create multi-prototype cluster representations, retrieve arbitrarily-shaped clusters, and reduce category proliferation. Another important contribution is the reduction of order-dependence, an issue that affects any agglomerative clustering method. This paper demonstrates two approaches for mitigating order-dependence: pre-processing using visual assessment of cluster tendency (VAT) or post-processing using a novel Merge ART module. The former is suitable for batch processing, whereas the latter also works for online learning. Experimental results in online mode carried out on 30 benchmark data sets show that DDVFA cascaded with Merge ART statistically outperformed the best other ART-based systems when samples were randomly presented. Conversely, they were found to be statistically equivalent in offline mode when samples were pre-processed using VAT. Remarkably, performance comparisons to non-ART-based clustering algorithms show that DDVFA (which learns incrementally) was also statistically equivalent to the non-incremental (offline) methods of density-based spatial clustering of applications with noise (DBSCAN), single linkage hierarchical agglomerative clustering (SL-HAC), and k-means, while retaining the appealing properties of ART. Links to the source code and data are provided. Considering the algorithm’s simplicity, online learning capability, and performance, it is an ideal choice for many agglomerative clustering applications.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2019.08.033