Loading…

A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallic‐Sulfide‐Containing Potassium‐Ion Batteries

Metal–organic framework‐derived NiCo2.5S4 microrods wrapped in reduced graphene oxide (NCS@RGO) were synthesized for potassium‐ion storage. Upon coordination with organic potassium salts, NCS@RGO exhibits an ultrahigh initial reversible specific capacity (602 mAh g−1 at 50 mA g−1) and ultralong cycl...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2019-10, Vol.58 (41), p.14740-14747
Main Authors: Xie, Junpeng, Li, Xiaodan, Lai, Haojie, Zhao, Zhijuan, Li, Jinliang, Zhang, Wanggang, Xie, Weiguang, Liu, Yiming, Mai, Wenjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal–organic framework‐derived NiCo2.5S4 microrods wrapped in reduced graphene oxide (NCS@RGO) were synthesized for potassium‐ion storage. Upon coordination with organic potassium salts, NCS@RGO exhibits an ultrahigh initial reversible specific capacity (602 mAh g−1 at 50 mA g−1) and ultralong cycle life (a reversible specific capacity of 495 mAh g−1 at 200 mA g−1 after 1 900 cycles over 314 days). Furthermore, the battery demonstrates a high initial Coulombic efficiency of 78 %, outperforming most sulfides reported previously. Advanced ex situ characterization techniques, including atomic force microscopy, were used for evaluation and the results indicate that the organic potassium salt‐containing electrolyte helps to form thin and robust solid electrolyte interphase layers, which reduce the formation of byproducts during the potassiation–depotassiation process and enhance the mechanical stability of electrodes. The excellent conductivity of the RGO in the composites, and the robust interface between the electrodes and electrolytes, imbue the electrode with useful properties; including, ultrafast potassium‐ion storage with a reversible specific capacity of 402 mAh g−1 even at 2 A g−1. The potassium‐ion storage performance of a NiCo2.5S4 composite electrode improves in a potassium bis(fluorosulfonyl) imide, ethylene and propylene carbonate mixed electrolyte (KFSI‐EP, EPF (doped with fluoroethylene carbonate)). Performance declines in KPF6‐ or fluoroethylene‐carbonate‐containing electrolytes. A robust solid electrolyte interphase layer increases performance in a potassium‐ion battery. Scale: 10 μm.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201908542