Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture

Nutrient-efficient crops are a solution to the two grand challenges of modern agriculture: improving food security while reducing environmental impacts. The primary challenges are (1) nitrogen (N) and phosphorus (P) efficiency; (2) potassium (K), calcium (Ca), and magnesium (Mg) efficiency for acid...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2019-07, Vol.223 (2), p.548-564
Main Author: Lynch, Jonathan P.
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nutrient-efficient crops are a solution to the two grand challenges of modern agriculture: improving food security while reducing environmental impacts. The primary challenges are (1) nitrogen (N) and phosphorus (P) efficiency; (2) potassium (K), calcium (Ca), and magnesium (Mg) efficiency for acid soils; and (3) iron (Fe) and zinc (Zn) efficiency for alkaline soils. Root phenotypes are promising breeding targets for each of these. The Topsoil Foraging ideotype is beneficial for P capture and should also be useful for capture of K, Ca, and Mg in acid soils. The Steep, Cheap, and Deep ideotype for subsoil foraging is beneficial for N and water capture. Fe and Zn capture can be improved by targeting mechanisms of metal mobilization in the rhizosphere. Root hairs and phenes that reduce the metabolic cost of soil exploration should be prioritized in breeding programs. Nutrient-efficient crops should provide benefits at all input levels. Although our current understanding is sufficient to deploy root phenotypes for improved nutrient capture in crop breeding, this complex topic does not receive the resources it merits in either applied or basic plant biology. Renewed emphasis on these topics is needed in order to develop the nutrient-efficient crops urgently needed in global agriculture.
ISSN:0028-646X
1469-8137