Loading…

Dual-Element Intravascular Ultrasound Transducer for Tissue Harmonic Imaging and Frequency Compounding: Development and Imaging Performance Assessment

Objective: For accurate diagnosis of atherosclerosis, the high spatial and contrast resolutions of intravascular ultrasound (IVUS) images are a key requirement. Increasing the center frequency of IVUS is a simple solution to meet this requirement. However, this leads to a reduction in imaging depth...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2019-11, Vol.66 (11), p.3146-3155
Main Authors: Lee, Junsu, Chang, Jin Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: For accurate diagnosis of atherosclerosis, the high spatial and contrast resolutions of intravascular ultrasound (IVUS) images are a key requirement. Increasing the center frequency of IVUS is a simple solution to meet this requirement. However, this leads to a reduction in imaging depth due to the frequency-dependent attenuation of ultrasound. Here, we report a recently developed dual-element IVUS transducer for tissue harmonic imaging (THI) and frequency compounding to increase the spatial and contrast resolutions of IVUS images, while maintaining the imaging depth to assess the overall morphological change of blood vessels. Methods: One 35-MHz element is used for producing general IVUS images and the other 70-MHz element is for receiving the second harmonic signals induced by the 35-MHz ultrasound. The fundamental and second harmonic signals can also be used for frequency compound imaging to further improve contrast resolution. The spatial and contrast resolutions achieved by the developed transducer were evaluated through wire and tissue-mimicking phantom imaging tests. Additionally, the images of a stent deployed in a tissue-mimicking phantom and an excised pig artery were acquired to assess clinical usefulness of the transducer. Results: The results demonstrated that the developed IVUS transducer enables us to simultaneously examine the overall morphological change of blood vessels by the 35-MHz ultrasound images and the near vessel layers such as the intima, the media, and the adventitia by either THI or compound images with high spatial and contrast resolutions. In addition, the developed transducer facilitates the simultaneous acquisition of 35- and 70-MHz fundamental images when needed. Conclusion: The developed dual-element IVUS transducer makes it possible to fully realize the potential benefits of IVUS in the diagnosis of atherosclerosis.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2019.2901005