Loading…

Stance and swing phase knee flexion recover at different rates following total knee arthroplasty: An inertial measurement unit study

Total knee arthroplasty (TKA) is the most common joint replacement in the United States. Range of motion (ROM) monitoring includes idealized clinic measures (e.g. goniometry during passive ROM) that may not accurately represent knee function. Accordingly, a novel, portable, inertial measurement unit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2019-02, Vol.84, p.129-137
Main Authors: Chapman, Ryan M., Moschetti, Wayne E., Van Citters, Douglas W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Total knee arthroplasty (TKA) is the most common joint replacement in the United States. Range of motion (ROM) monitoring includes idealized clinic measures (e.g. goniometry during passive ROM) that may not accurately represent knee function. Accordingly, a novel, portable, inertial measurement unit (IMU) based ROM measurement method was developed, validated, and implemented. Knee flexion was computed via relative motion between two IMUs and validated via optical motion capture (p > 0.05). Prospective analyses of 10 healthy individuals (5M, 50 ± 19 years) and 20 patients undergoing TKA (3 lost to follow up, 10M, 65 ± 6 years) were completed. Controls wore IMUs for 1-week. Patients wore IMUs for 1-week pre-TKA, 6-weeks immediately post-TKA, and 1-week at 1-year post-TKA. Flexion was computed continuously each day (8–12 h). Metrics included daily maximum flexion and flexion during stance/swing phases of gait. Maximum flexion was equal between cohorts at all time points. Contrastingly, patient stance and swing flexion were reduced pre-TKA, yet improved post-TKA. Specifically, patient stance and swing flexion were reduced below control/pre-TKA values during post-TKA week 1. Stance flexion exceeded pre-TKA and equaled control levels after week 2. However, swing flexion only exceeded pre-TKA and equaled control levels at 1-year post-TKA. This novel method improves upon the accuracy/portability of current methods (e.g. goniometry). Interestingly, surgery did not impact maximum ROM, yet improved the ability to flex during gait allowing more efficient and safe ambulation. This is the first study continuously monitoring long-term flexion before/after TKA. The results offer richer information than clinical measures about expected TKA rehabilitation.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2018.12.027