Loading…

Active compounds present inRosmarinus officinalis leaves andScutellaria baicalensis root evaluated as new therapeutic agents for endometriosis

Can carnosic acid, (CA) rosmarinic acid (RA) and wogonin (WG) inhibit the growth of cultured human endometrial stromal cells and endometriotic-like lesions induced in a BALB/c model of endometriosis? Primary stromal cell cultures were established from endometrial biopsies from women with endometrios...

Full description

Saved in:
Bibliographic Details
Published in:Reproductive biomedicine online 2018-12, Vol.37 (6), p.769-782
Main Authors: Ferella, Luciana, Bastón, Juan Ignacio, Bilotas, Mariela Andrea, Singla, José Javier, González, Alejandro Martín, Olivares, Carla Noemí, Meresman, Gabriela Fabiana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Can carnosic acid, (CA) rosmarinic acid (RA) and wogonin (WG) inhibit the growth of cultured human endometrial stromal cells and endometriotic-like lesions induced in a BALB/c model of endometriosis? Primary stromal cell cultures were established from endometrial biopsies from women with endometriosis and controls. The human endometrial stromal cell line T-HESC was also used for in-vitro experiments. Endometriosis was surgically induced in BALB/c mice, which were randomly assigned to CA 2 mg/kg/day (n = 11); CA 20 mg/kg/day (n = 10); RA 1 mg/kg/day (n = 11); RA 3 mg/kg/day (n = 10); WG 20 mg/kg/day (n = 12); intraperitoneal vehicle control (n = 8) or oral vehicle control (n = 11). After surgery, CA and RA were administered intraperitoneally on days 14–28. WG was administered orally by intragastric gavage on days 14–26. CA, RA and WG significantly inhibited in-vitro cell proliferation in primary and T-HESC cell cultures (P < 0.05). CA and WG induced cell cycle arrest of T-HESC at the G2/M phase (P < 0.01). RA reduced intracellular ROS accumulation (P < 0.001), whereas WG increased it (P < 0.05). WG significantly inhibited oestrogen receptor alpha expression in T-HESC (P < 0.01). In-vivo, CA, RA and WG significantly reduced lesions size (P < 0.05). All compounds significantly decreased the percentage of cells in proliferation (P < 0.05) whereas RA and WG further increased the percentage of apoptotic cells (P < 0.05) in endometriotic-like lesions. The results are promising; further investigation of these compounds as new therapeutics is needed. [Display omitted]
ISSN:1472-6483
1472-6491
DOI:10.1016/j.rbmo.2018.09.018