Loading…

Gene expression analysis of antimony resistance in Leishmania tropica using quantitative real-time PCR focused on genes involved in trypanothione metabolism and drug transport

Pentavalent antimonials remain the treatment of choice for all the clinical forms of leishmaniasis. The increasing rates of antimony resistance are becoming a serious health problem in treatment of anthroponotic cutaneous leishmaniasis (ACL). Accordingly, unraveling molecular markers is crucial for...

Full description

Saved in:
Bibliographic Details
Published in:Archives of Dermatological Research 2019-01, Vol.311 (1), p.9-17
Main Authors: Mohebali, Mehdi, Kazemirad, Elham, Hajjaran, Homa, Kazemirad, Elaheh, Oshaghi, Mohammad Ali, Raoofian, Reza, Teimouri, Aref
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pentavalent antimonials remain the treatment of choice for all the clinical forms of leishmaniasis. The increasing rates of antimony resistance are becoming a serious health problem in treatment of anthroponotic cutaneous leishmaniasis (ACL). Accordingly, unraveling molecular markers is crucial for improving medication strategies and monitoring of drug-resistant parasites. Different studies have suggested the importance of genes involved in trypanothione metabolism and drug transport. In this regard, present study was designed to investigate the RNA expression level of five genes including γ-GCS, ODC, TRYR (involved in trypanothione metabolism), AQP1 (acts in drug uptake) and MRPA (involved in sequestration of drug) in sensitive and resistant Leishmania tropica isolates. Seven antimony-resistant and seven antimony-sensitive L. tropica clinical isolates were collected from ACL patients. Drug sensitivity test was performed on the samples as well as reference strains; afterwards, gene expression analysis was performed on clinical isolates by quantitative real-time PCR. The results revealed that the average expression level of AQP1 gene was decreased (0.47-fold) in resistant isolates compared to sensitive ones whereas MRPA (2.45), γ-GCS (2.1) and TRYR (1.97) was upregulated in resistant isolates. The average expression of ODC (1.24-fold) gene was not different significantly between sensitive and resistant isolates. Our findings suggest that AQP1, MRPA, GSH1 and TRYR can be considered as potential molecular markers for screening of antimony resistance in some L. tropica clinical isolates.
ISSN:0340-3696
1432-069X
DOI:10.1007/s00403-018-1872-2