Loading…

On the Use of Auxiliary Receive Channels for Clutter Mitigation With Phased Array Weather Radars

Phased array radars (PARs) are attractive in weather surveillance primarily because of their capability to electronically steer. When combined with the recently developed beam multiplexing (BMX) technique, these radars can obtain very rapid update scans that are useful in monitoring severe weather....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2009-01, Vol.47 (1), p.272-284
Main Authors: Le, K.D., Palmer, R.D., Boon Leng Cheong, Tian-You Yu, Guifu Zhang, Torres, S.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phased array radars (PARs) are attractive in weather surveillance primarily because of their capability to electronically steer. When combined with the recently developed beam multiplexing (BMX) technique, these radars can obtain very rapid update scans that are useful in monitoring severe weather. A consequence is that the small number of contiguous samples of the time series obtained can be a challenge for temporal/spectral filters used for clutter mitigation. As a result, the accurate extraction of weather signals can become the limiting performance barrier for PARs that employ BMX in clutter-dominated scattering fields. By exploiting the spatial correlation of the auxiliary channel signals, the effect of clutter contamination can be reduced in these conditions. In this paper, three spatial filtering techniques that used low-gain auxiliary receive channels are presented. The effect of clutter mitigation was studied using numerical simulations of a tornadic environment for changes in signal-to-noise ratio, clutter-to-signal ratio, number of time series samples, varying clutter spectral widths, and maximum weight constraints. Since such data are not currently available from a horizontally pointed phased array weather radar, experimental validation was applied to an existing data set from the turbulent eddy profiler, which is a vertically pointed PAR. Although preliminary, the results show promise for clutter mitigation with extremely short nonuniform sampling.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2008.2001260