Loading…

Accurate 13-C and 15-N molecular crystal chemical shielding tensors from fragment-based electronic structure theory

Standard nuclear magnetic resonance (NMR) spectroscopy experiments measure isotropic chemical shifts, but measuring the chemical shielding anisotropy (CSA) tensor can provide additional insights into solid state chemical structures. Interpreting the principal components of these tensors is facilitat...

Full description

Saved in:
Bibliographic Details
Published in:Solid state nuclear magnetic resonance 2018-12, Vol.96, p.10-18
Main Authors: Hartman, Joshua D, Beran, Gregory J O
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Standard nuclear magnetic resonance (NMR) spectroscopy experiments measure isotropic chemical shifts, but measuring the chemical shielding anisotropy (CSA) tensor can provide additional insights into solid state chemical structures. Interpreting the principal components of these tensors is facilitated by first-principles chemical shielding tensor predictions. Here, the ability to predict molecular crystal CSA tensor components for C and N nuclei with fragment-based electronic structure techniques is explored. Similar to what has been found previously for isotropic chemical shifts, the benchmarking demonstrates that fragment-based techniques can accurately reproduce CSA tensor components. The use of hybrid density functionals like PBE0 or B3LYP provide higher accuracy than generalized gradient approximation functionals like PBE. Unlike for planewave density functional techniques, hybrid density functionals can be employed routinely with modest computational cost in fragment approaches. Finally, good consistency between the regression parameters used to map either isotropic shieldings or CSA tensor components is demonstrated, providing further evidence for the quality of the models and highlighting that models trained for isotropic shifts can also be applied to CSA tensor components.
ISSN:0926-2040
1527-3326
DOI:10.1016/j.ssnmr.2018.09.003