Loading…

A Bird’s-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations

Enzymes catalyze a vast range of reactions. Their catalytic performances, mechanisms, global folds, and active-site architectures are also highly diverse, suggesting that enzymes are shaped by an entire range of physiological demands and evolutionary constraints, as well as by chemical and physicoch...

Full description

Saved in:
Bibliographic Details
Published in:Chemical reviews 2018-09, Vol.118 (18), p.8786-8797
Main Authors: Davidi, Dan, Longo, Liam M, Jabłońska, Jagoda, Milo, Ron, Tawfik, Dan S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enzymes catalyze a vast range of reactions. Their catalytic performances, mechanisms, global folds, and active-site architectures are also highly diverse, suggesting that enzymes are shaped by an entire range of physiological demands and evolutionary constraints, as well as by chemical and physicochemical constraints. We have attempted to identify signatures of these shaping demands and constraints. To this end, we describe a bird’s-eye view of the enzyme space from two angles: evolution and chemistry. We examine various chemical reaction parameters that may have shaped the catalytic performances and active-site architectures of enzymes. We test and weigh these considerations against physiological and evolutionary factors. Although the catalytic properties of the “average” enzyme correlate with cellular metabolic demands and enzyme expression levels, at the level of individual enzymes, a multitude of physiological demands and constraints, combined with the coincidental nature of evolutionary processes, result in a complex picture. Indeed, neither reaction type (a chemical constraint) nor evolutionary origin alone can explain enzyme rates. Nevertheless, chemical constraints are apparent in the convergence of active-site architectures in independently evolved enzymes, although significant variations within an architecture are common.
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.8b00039