Loading…
Understanding the Mechanism for Capacity Decay of V6O13-Based Lithium-Metal Polymer Batteries
Capacity decay has been a well-known phenomenon in battery technology. V6O13 has been proved to be one of promising cathode materials for the lithium-metal polymer battery owing to high electrochemical capacity and electronic conductivity. However, these V6O13-based cathodes suffer from characterist...
Saved in:
Published in: | ACS applied materials & interfaces 2018-09, Vol.10 (35), p.29667-29674 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Capacity decay has been a well-known phenomenon in battery technology. V6O13 has been proved to be one of promising cathode materials for the lithium-metal polymer battery owing to high electrochemical capacity and electronic conductivity. However, these V6O13-based cathodes suffer from characteristic capacity decline under operating conditions, and it is also difficult to achieve the theoretical capacities of V6O13. Herein, we report, for the first time, the thermal instability between the components in the cathode composites using various analytical methods, such as in situ thermal gravimetric analysis: infrared spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. This thermal instability is believed to be a chemical reaction between the binding material (polyalkylene glycols) and V6O13, which enables an improved understanding of the decay in the capacity of V6O13-based cathodes and initial capacities that are significantly below the theoretical value. The identification of the reaction between cathode and binding materials may trigger the further investigation of capacity decay of other cathode materials, paving the way to the design and development of high-capacity batteries. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b10629 |