Loading…

A Review of Workplace Risk Management Measures for Nanomaterials to Mitigate Inhalation and Dermal Exposure

Abstract This review describes an evaluation of the effectiveness of Risk Management Measures (RMM) for nanomaterials in the workplace. Our aim was to review the effectiveness of workplace RMM for nanomaterials and to determine whether established effectiveness values of conventional chemical substa...

Full description

Saved in:
Bibliographic Details
Published in:Annals of work exposures and health 2018-10, Vol.62 (8), p.907-922
Main Authors: Goede, Henk, Christopher-de Vries, Yvette, Kuijpers, Eelco, Fransman, Wouter
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This review describes an evaluation of the effectiveness of Risk Management Measures (RMM) for nanomaterials in the workplace. Our aim was to review the effectiveness of workplace RMM for nanomaterials and to determine whether established effectiveness values of conventional chemical substances applied for modelling purposes should be adopted or revised based on available evidence. A literature review was conducted to collate nano-specific data on workplace RMM. Besides the quantitative efficacy values, the library was populated with important covariables such as the study design, measurement type, size of particles or agglomerates/aggregates, and metrics applied. In total 770 records were retrieved from 41 studies for three general types of RMM (engineering controls, respiratory equipment and skin protective equipment: gloves and clothing). Records were found for various sub-categories of the different types of RMM although the number of records for each was generally limited. Significant variation in efficacy values was observed within RMM categories while also considering the respective covariables. Based on a comparative evaluation with efficacy values applied for conventional substances, adapted efficacy values are proposed for various RMM sub-categories (e.g. containment, fume cupboards, FFP2 respirators). It is concluded that RMM efficacy data for nanomaterials are limited and often inconclusive to propose effectiveness values. This review also shed some light on the current knowledge gaps for nanomaterials related to RMM effectiveness (e.g. ventilated walk-in enclosures and clean rooms) and the challenges foreseen to derive reliable RMM efficacy values from aggregated data in the future.
ISSN:2398-7308
2398-7316
DOI:10.1093/annweh/wxy032