Loading…

Crystal structures of K2[XSi5O12] (X = Fe2+, Co, Zn) and Rb2[XSi5O12] (X = Mn) leucites: comparison of monoclinic P21/c and Ia{\overline 3}d polymorph structures and inverse relationship between tetrahedral cation (T = Si and X)-O bond distances and intertetrahedral T-O-T angles

The leucite tectosilicate mineral analogues K2X2+Si5O12 (X = Fe2+, Co, Zn) and Rb2X2+Si5O12 (X = Mn) have been synthesized at elevated temperatures both dry at atmospheric pressure and at controlled water vapour pressure; for X = Co and Zn both dry and hydrothermally synthesized samples are availabl...

Full description

Saved in:
Bibliographic Details
Published in:Acta crystallographica Section B, Structural science, crystal engineering and materials Structural science, crystal engineering and materials, 2018-06, Vol.74, p.274-286
Main Authors: Bell, Anthony M T, Henderson, C Michael B
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The leucite tectosilicate mineral analogues K2X2+Si5O12 (X = Fe2+, Co, Zn) and Rb2X2+Si5O12 (X = Mn) have been synthesized at elevated temperatures both dry at atmospheric pressure and at controlled water vapour pressure; for X = Co and Zn both dry and hydrothermally synthesized samples are available. Rietveld refinement of X-ray data for hydrothermal K2X2+Si5O12 (X = Fe2+, Co, Zn) samples shows that they crystallize in the monoclinic space group P21/c and have tetrahedral cations (Si and X) ordered onto distinct framework sites [cf. hydrothermal K2MgSi5O12; Bell et al. (1994a), Acta Cryst. B50, 560-566]. Dry-synthesized K2X2+Si5O12 (X = Co, Zn) and Rb2X2+Si5O12 (X = Mn) samples crystallize in the cubic space group Ia{\overline 3}d and with Si and X cations disordered in the tetrahedral framework sites as typified by dry K2MgSi5O12. Both structure types have tetrahedrally coordinated SiO4 and XO4 sharing corners to form a partially substituted silicate framework. Extraframework K+ and Rb+ cations occupy large channels in the framework. Structural data for the ordered samples show that mean tetrahedral Si-O and X-O bond lengths cover the ranges 1.60 Å (Si-O) to 2.24 Å (Fe2+-O) and show an inverse relationship with the intertetrahedral angles (T-O-T) which range from 144.7° (Si-O-Si) to 124.6° (Si-O-Fe2+). For the compositions with both disordered and ordered tetrahedral cation structures (K2MgSi5O12, K2CoSi5O12, K2ZnSi5O12, Rb2MnSi5O12 and Cs2CuSi5O12 leucites) the disordered polymorphs always have larger unit-cell volumes, larger intertetrahedral T-O-T angles and smaller mean T-O distances than their isochemical ordered polymorphs. The ordered samples clearly have more flexible frameworks than the disordered structures which allow the former to undergo a greater degree of tetrahedral collapse around the interframework cavity cations. Multivariant linear regression has been used to develop equations to predict intertetrahedral T-O-T angle variation depending on the independent variables Si-O and X-O bond lengths, cavity cation ideal radius, intratetrahedral (O-T-O) angle variance, and X cation electronegativity.
ISSN:2052-5206
DOI:10.1107/S2052520618004092