Loading…

Does inorganic nitrogen limit plant growth 3–5 years after fire in a Wyoming, USA, lodgepole pine forest?

Nitrogen (N) is the major nutrient limiting plant growth and production in terrestrial ecosystems around the world. However, nutrient limitation is spatially variable, and different species within the same ecosystem may be limited by different nutrients. N constraints on plant growth have been inves...

Full description

Saved in:
Bibliographic Details
Published in:Forest ecology and management 2009-02, Vol.257 (3), p.829-835
Main Authors: Romme, William H., Tinker, Daniel B., Stakes, Gail K., Turner, Monica G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitrogen (N) is the major nutrient limiting plant growth and production in terrestrial ecosystems around the world. However, nutrient limitation is spatially variable, and different species within the same ecosystem may be limited by different nutrients. N constraints on plant growth have been investigated via fertilization experiments in a variety of ecosystems; however, recently burned coniferous forests are notably under-studied. Given the recent increase in fire activity across western North America, it is important to understand what limits plant growth and carbon sequestration in coniferous forests recovering from wildfire. We evaluated potential inorganic N limitation in four common native plant species, 3–5 years after stand-replacing wildfire in a lodgepole pine forest ( Pinus contorta var. latifolia) in Wyoming, USA. Granular reagent grade ammonium nitrate was added around individual plants at a rate equal to the natural background rate of net N mineralization and at 10× this rate. The grass Calamagrostis rubescens exhibited clear evidence of inorganic N limitation: above-ground biomass and shoot:root ratio increased with the high-fertilizer treatment. Nitrogen:phosphorus (N:P) ratio in un-fertilized C. rubescens plants was 16 in the high-fertilizer treatment, suggesting the onset of P limitation. The upland sedge Carex rossii and seedlings of lodgepole pine were not limited by inorganic N: neither species showed any growth response to N fertilization; N:P ratios were only slightly
ISSN:0378-1127
1872-7042
DOI:10.1016/j.foreco.2008.10.013